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1 Introduction

Inflation is unpopular with the public. Price stability and inflation are wide consensus among

macroeconomists and policymakers. It is rather surprising, therefore, that an issue about the

relationship between these two variables is yet to emerge. While early studies by Friedman’s

(1977) Nobel Lecture suggested an exploitable linkage between inflation uncertainty and the

level of inflation, the large swings experience of the United States over 1960-88 belied this

finding. Ball and Cecchetti (1990), Evans (1991) and Ball (1992) also provide evidence of

such an effect. The most basic test of inflation-uncertainty consists of estimating a conditional

mean approaches where the dependent variable is the average inflation rate and the explanatory

variable is the standard deviation of inflation or a moving standard deviation of the variable

under consideration. There are three main controversies in the empirical literature on the

linkage effect of inflation on inflation uncertainty. First is that numerous recently developed

models imply a positive association between the rate of inflation and inflation uncertainty.

Second is whether models can exhibit a significant evidence of the higher inflation rate on the

rate invoking the inflation variability incurring the higher cost. Third is the nature of the

inflation-uncertainty effect that changes in the inflation regime are a major source of inflation

uncertainty.

The contribution of this article is to estimate the unconditional inflation-uncertainty for

broadly constituted samples using quantile regression. The estimated quantile regression pro-

cess on the higher inflation rate exhibits a steeper upward at approximately 75th and 95th

quantile. This finding suggests that there is evidence of unconditional inflation-uncertainty

for countries in the upper tail of the conditional distribution of inflation rates but weak effect

among countries in the lower tail. This result is in contrast with previous estimates obtained

with conditional mean estimation methods such us generalized autoregressive conditional het-

eroskedasticity, henceforth GARCH. For instance, Ungar and Zilberfarb (1993) and Hwang

(2001) show that a high rate of inflation does not necessarily imply a high variance of inflation.

The motivation to use quantile regression on the inflation-uncertainty is twofold. First, the
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quantile regression estimator is robust to outlying observations on the dependent variable. This

is an important point given that the unconditional inflation distribution is characterized by

right tails, as can be seen, for instance, in Baillie et al. (1996). Second, the quantile regression

estimator gives, potentially, one solution to each quantile. Therefore, we may assess how policy

variables affect countries according to their position on the inflation distribution. By using

quantile methods is an interesting way of capturing countries’ heterogeneity. In our case, the

patterns of the inflation and inflation uncertainty imply that the coefficient on the inflation

rates increases with the quantiles, suggesting that impact effect is stronger, in some sense, for

countries in the upper quantiles. In other words, we assert that since the quantile estimates

change so dramatically across the distribution, it is unlikely that mere data differences could

be solely responsible.

Economists frequently study the relationship between inflation and inflation uncertainty

because of its importance for policy analysis. Theoretically, Friedman (1977) first outlined an

informal argument regarding the positive correlation between the level of inflation and inflation

uncertainty, with higher inflation leading to greater uncertainty and lower output growth. On

the other hand, reversing the causal effect link of the Friedman, Cukierman and Meltzer (1986)

show that higher inflation uncertainty will lead to more inflation. These inferences, in turn,

are easily recognized when we consider how uncertainty about inflation is likely to affect policy

decision making. With these differences in mind, we shall use the cross sectional data with

quantile regression model in subsequent sections to reexamine not only the variance of inflation

that affects inflation rate, but also the inflation raises uncertainty into the future.

On an empirical level, beginning with the early work of Evans’s (1991) discovers the link

between inflation rates and inflation uncertainty that compares to linkage inflation-uncertainty

effects found in Ball and Cecchetti (1990). They set out a model that puts Evans (1991) ap-

proach with in the time-varying parameter and ARCH specification good setting. From the

linkage of inflation-uncertainty that includes time variation in the structure of inflation, the pa-

per next covers a case of Brunner’s (1993), Markov switching model with inflationary dynamics
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as inflation regimes, also proposed in Telatar and Telatar (2003); this model with temporal

ordering added is used in Holland (1995). The paper then turns to cross-country models

that compare to Davis and Kanago (1997). Then the paper sets out models with GARCH

family approaches for estimating the relationship between inflation and inflation uncertainty,

proposed in Grier and Perry (1996, 1998), Fountas (2001), Giordani and Söderlind (2003),

Apergis (2004), Elder (2004), Kontonikas (2004), Berument and Dincer (2005), Daal et al.

(2005) facilitate this analysis. Most existing evidences regarding the validity of the Friedman

hypothesis are still far from incontrovertible. Finally, Cohrad and Karanasos (2005) are put

forth that implies parametric models of long memory in both the conditional mean and the

conditional variance of inflation to investigate the relationship between inflation and inflation

uncertainty. Then, less robust evidence is found regarding the direction of the impact of an

increased nominal uncertainty on inflation.

Yet, there are also empirical findings against the Friedman hypothesis. For instance, Davis

and Kanago (1998) argue that the Friedman hypothesis works better for a cross section of

countries at a point in time than for the evolution of inflation over time within countries. It

turns out that the results do not support the existence of the Friedman (1977). Furthermore,

Hwang (2001) use time series data with various ARFIMA-GARCH type models, but do not

find evidence in favor of the Friedman’s view. In addition, Berument et al.’s (2005) evidence

from using a time-varying parameter model with a GARCH specification, have flatly rejected

that notion, contending that the inflation uncertainty does not necessarily signify the level of

inflation rates.

However, many studies on the relationship between inflation and its uncertainty used

GARCH type models are mainly focusing on estimating the conditional mean function while

the mean effects obtained via the conditional mean regression offer intriguing summary statis-

tics for measuring the impacts of covariates, they fail to characterize the full distributional

impact. In contrast, this article applies the quantile regression introduced by Koenker and

Bassett (1978), to examine the validity of the Friedman and the Cukierman and Meltzer hy-
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potheses across different quantiles of the unconditional inflation distribution. As is well known,

quantile regression has become an increasing important tool to estimate quantile-specific ef-

fects that describe the impact of variables not only on the center but also on the tails of the

outcome distribution.

This article is divided as follows. Section 2 provides a brief review of the quantile regression

estimation method and its properties. Section 3 introduces the estimates of the regression

quantiles for the unconditional inflation-uncertainty equation. Section 4 describes the data

sources, summarizes the empirical results. Finally, Section 6 concludes.

2 A brief introduction to quantile regression

Much of applied econometric may be viewed as an elaboration of the linear regression model

and associated estimation methods of ordinary least squares (OLS) and least absolute deviation

(LAD). The well known that the former method estimates by minimizing the sum of squared

errors and results in an approximation to the mean function of the conditional distribution

of the regressand. The later method minimizes the sum of absolute errors and fits medians

to a linear function of covariates. Useful feature of the quantile regression is distinct from

them as not bind that represent central tendency of a distribution. We could go further and

compute several different regression curves corresponding to the various percentage points

of the distributions and thus get a more complete picture of the set. As far as the entire

conditional distribution is concerned, it is not satisfactory to characterize only the mean (or

median) behavior. In other words, quantile regression is robust to the presence of outliers.

Now we briefly discuss the quantile regression estimation procedure and some properties

of the quantile regression estimator. The quantile regression, first proposed by Koenker and

Bassett (1978), has the appealing feature that it can estimate a family of conditional quantile

functions that offer us a more complete picture of covariate effects. Given any real-valued

random variable X may be characterized by its distribution function as

F (x) = Pr(X ≤ x) (1)
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The τ th quantile, for 0 < τ < 1, is defined as

Q(τ) = inf{x : F (X) ≥ τ}, (2)

where X is a random variable with distribution function given by eq.(1). The definition

of quantile simply says that an observation in the τ th percentile is greater than τ% of the

observations and smaller than (1 − τ)% of the observations. We let (yi xi), i = 1, 2, 3, . . . , n,

be a sample from some population, where yi is a real outcome variable of interest and xi is

a vector of regressors include policy variables. The general quantile regression, described in

Bunchinsky (1998), takes the linear form:

yi = x′
iβτ + uτ (3)

for i = 1, 2, · · · , n, where β is a k × 1 vector of coefficients, xi is the columan vector that is the

transpose of the ith row of the Xn×k matrix of explanatory variables, yi is the ith observation

of the dependent variable and uτ is unknown error term. The τ th conditional quantile of y

given x can be rewritten as

Quantτ (yi|xi) = x′
iβτ (4)

Its estimate is given by x′
iβ̂τ . As τ increases continuously, the conditional distribution of y

given x is traced out. Then ,it is assumed that the conditional quantile of yi, conditional

on xi, satisfies Quantτ (yi|xi) = x′
iβτ , for several different values of τ , τ ∈ (0 1), so that

Quantτ (yi|xi) = 0. It is in this way that quantile regression allows for parameter heterogeneity

across different types of regressors. Thus, the quantile regression estimator can be found as

the solution to the following minimization problem:

minβ∈<k

[

∑

i∈{i:yi≥xiβ}

τ |yi − x′
iβ| +

∑

i∈{i:yi<xiβ}

(1 − τ)|yi − x′
iβ|

]

(5)

The quantile function is a weighed sum of the absolute value of the residuals. Where the

weights are symmetric for the median regression case in τ = 1/2, the minimization problem

above reduces to minβ∈<K

∑n
i=1

|(yi − x′
iβ)|, and asymmetric otherwise. By varying the value
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of parameter τ from 0 to 1, we can generate the entire conditional distribution of y given x.

In practice, we consider the partial derivative of the conditional quantile of y with respect to

one of the regressors, coefficients of policy variable, can be interpreted as the marginal change

in the dependent variable due to a marginal change in the policy variable. Note that since we

have on β for each τ , the quantile regression approach allows us to identify the effects of the

covariates on the regressand at different points on the distribution. In particular, as shown

in Koenker and Hallock (2001), an attractive property of the quantile regression estimator is

its robustness to the presence of outlying observations on the dependent variable. Interested

readers are referred to Koenker (2004, 2005) for more details.

3 The unconditional inflation-uncertainty equation

Assuming that the ‘τ ’th quantile of the conditional distribution of dependent variable is linear

in explanatory variable, following Koenker and Bassett (1978), the unconditional quantile

regression model can be applied to the following two equations to examine the relationship

between inflation and inflation uncertainty.

Πi = ατ + βτ IUi + uτ (6)

IUi = γτ + δτΠi + vτ (7)

The terms Π and IU denote inflation and inflation uncertainty of equation (6) and (7),

respectively. ατ , βτ , γτ and δτ are the unknown parameters to be estimated for different

values of τ , and uτ and vτ are the error terms. By varying the value of τ from 0 to 1, we can

trace the entire distribution of dependent variable conditional on independent variable. Just

as we can define the least squares estimators for obtaining the conditional mean function as

the solution to the problem of minimizing a sum of squared residuals, the quantile estimators

for βτ and δτ can be obtained by minimizing the following asymmetric linear penalty function

as equation (5). For reasons discussed above, the quantile regression has the appealing feature

that it can estimate a family of unconditional quantile functions that offer us a more complete

picture of covariate effects.
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4 Data descriptive and empirical results

4.1 Data sources

The data set used in this paper are collected primarily from “Global Development Finance

& World Development Indicators, 2005” contains inflation rate and inflation uncertainty with

cross sectional data in 161 countries for period from 1961 to 2002. Data for a number of

developing countries, however, have a shorter span. Because of the uneven coverage, the

empirical analysis is conducted using unbalanced panels. The inflation series is obtained by

taking the logarithmic of the growth rate of the CPI index. The popular method for measuring

inflation uncertainty is the standard deviation of inflation rate, as employed by Davis and

Kanogo (1996). Table 1 shows the summary statistics of those variables.

4.2 The results of parametric quantile models

Table 2 provides the estimation results of equation (6) from the parametric mean and quantile

regressions. In the simplest form, the conditional mean results in column (1) shows that the

estimates of ‘IU’ is 4.0864, as significant at 1% level, and have the expected sign, thus, providing

a preliminary support of the Cukierman-Meltzer’s hypothesis.

In contrast, five quantile estimates for the most basic specification are also obtained for τ =

0.05, 0.25, 0.5, 0.75 and 0.95 and shown in columns (2) to (6). The all coefficients are significant

at 1% level. The quantile process for inflation uncertainty exhibits a linear increasing trend.

For countries in the bottom 5% of the conditional inflation distribution the estimated coefficient

on inflation uncertainty is 0.8911, it increases to 4.0625 for countries in the conditional median,

to increase again to 5.2733 in the top 5% of the distribution. This result suggests that the effect

of inflation uncertainty has a stronger impact on countries in the upper tail of the inflation

distribution. These findings are suggestive of the potential information gains associated with

the estimation of the entire conditional inflation distribution, as opposed the conditional mean

only. Moreover, a comparison of the estimates of the conditional median function with OLS

estimates of the conditional mean function reveals that the traditional estimation techniques
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are affected by the tails of the data distribution.

Table 3 shows the results of Wald test for equality of slope coefficients across the quantiles

for the independent variables. These test results show that the slope coefficients indeed vary

across the quantiles. The slopes are significantly different from each other between the 25th

and 95th percentile for 5th quantile and between the 50th and 95th quantiles for 25th quantile.

These test results confirm the argument that the relationship between the inflation and inflation

uncertainty along with the inflation uncertainty affect the level of inflation rate differently

across the quantiles. Figure 1 superimposes five estimated quantile regression curves on the

scatter plot. The median regression line appears as a green line, the least-squares line as a

yellow line and the 95th quantile line as a purple line. Once again, we find that the upper tails

of the distribution, the larger effects of inflation uncertainty on inflation.

On the other hand, for the estimation results of equation (7) exhibit a similar pattern in

Table 4. Inflation causes inflation uncertainty and would precede it at least slightly. Note that

the OLS estimate of 0.1032, the estimated coefficient on the inflation is positive and significant

at 1% level. The quantile regression process for the variable ‘Π’ has an interesting pattern. It

is positive for all the quantiles, as expected, however, it increases from τ = 0.05 to τ = 0.50,

and then it increases again.

Table 5 presents the ANOVA test for the explanatory variable in equation (7) reject the null

hypothesis that five percentiles are jointly not significant. It is also suggested that the inflation

rates affect the inflation uncertainty differently across the inflation uncertainty distribution.

These test results show that the slope of 95th quantile have significantly different from each

other between the 5th and 75th quantiles. These evidences suggest positive inflationary shocks

have stronger impacts on inflation uncertainty for upper tails of distribution.

Figure 2 shows the similar pattern with the parametric quantile regression. The 95th

quantile still has steeper pattern with other quantiles. In this case, our results also support

the Friedman hypothesis that inflation increases the inflation uncertainty across the different

quantiles of regression function.
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5 Concluding remarks

This paper presents a general linkage effect between inflation and inflation uncertainty using

quantile regression methods. The estimates we gathered with the new set of specifications

suggest that inflation causes inflation uncertainty each other. One particularly interesting

result we find is the increasing linearity pattern of the regression quantile process on the

inflation and inflation uncertainty coefficient. Each slope coefficient can be interpreted as a

different impact of the inflation uncertainty to a change in an inflation variable, according to

a country’s position on the inflation-uncertainty distribution. This is an interesting way of

capturing parameter heterogeneity. This finding shows that the effect of inflation uncertainty

(or inflation) on the inflation (inflation uncertainty) is stronger for countries in the upper

quantiles than for countries in the lower quantiles.

Finally, our results can be subject to further investigation, and extended in several ways.

Application of recent inferential methods in quantile regression such as semiparametrically

and nonparametrically to avoid possible model mis-specifications is a natural extension of

our framework. Moreover, the newest version of the IMF data set contains a number of

important macroeconomic variables that we didn’t discuss here. Investigation on how these

policy variables relate to inflation and inflation uncertainty as a robustness check also can be

an interesting extension.
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Table 1: Basic statistics

variables mean median std min max

inflation rates(Π) 1.1353 0.9388 0.5858 0.4381 2.9640
inflation uncertainty (IU) 0.4648 0.4284 0.2100 0.1031 1.3306

† The logarithm of the raw (original) data.

Table 2: Regression results of coefficients across quantiles

Quantile regressions

Variables OLS 5th Quant 25th Quant 50th Quant 75th Quant 95th Quant

Πi = ατ + βτ IUi + uτ

Constant 0.7065 ∗∗∗ 0.8605 ∗∗∗ 0.9538 ∗∗∗ 0.6189 ∗∗∗ 0.8038 ∗∗ 1.8465 ∗∗

(0.000) (0.000) (0.000) (0.000) (0.011) (0.012)
IU 4.0864 ∗∗∗ 0.8911 ∗∗∗ 1.9126 ∗∗∗ 4.0625 ∗∗∗ 4.9815 ∗∗∗ 5.2733 ∗∗∗

(0.000) (0.069) (0.000) (0.000) (0.000) (0.000)

† ∗∗∗, ∗∗, and ∗ denote significant at 1%, 5% and 10% level, respectively.
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Table 3: Wald test for equality of coefficients across quantiles

5th Quant 25th Quant 50th Quant 75th Quant

5thQuant

25thQuant 3.6502 ∗

(0.057)
50thQuant 23.162 ∗∗∗ 19.086 ∗∗∗

(0.000) (0.000)
75thQuant 25.89 ∗∗∗ 18.857 ∗∗∗ 2.2282

(0.000) (0.000) (0.137)
95thQuant 8.1252 ∗∗∗ 5.0433 ∗∗ 0.677 0.0457

(0.005) (0.025) (0.4112) (0.831)

† The numbers present F-statistic of equality of the slope coeffi-
cients at Πi = ατ + βτ IUi + uτ across quantiles with (1, N − k)
degrees of freedom.

‡ The associated p-values are reported in parentheses.
? ∗∗∗, ∗∗, and ∗ denote significant at 1%, 5% and 10% level, respec-

tively.

Table 4: Regression results of coefficients across quantiles

Quantile regressions

Variables OLS 5th Quant 25th Quant 50th Quant 75th Quant 95th Quant

IUi = γτ + δτΠi + vτ

Constant 0.1980 ∗∗∗ 0.0790 0.1531 ∗∗∗ 0.2003 ∗∗∗ 0.2817 ∗∗∗ 0.3154 ∗∗∗

(0.000) (0.227) (0.000) (0.000) (0.000) (0.000)
Π 0.1032 ∗∗∗ 0.0552 ∗∗∗ 0.0825 ∗∗∗ 0.0997 ∗∗∗ 0.1070 ∗∗∗ 0.1685 ∗∗∗

(0.000) (0.004) (0.000) (0.000) (0.000) (0.000)

† ∗∗∗, ∗∗, and ∗ denote significant at 1%, 5% and 10% level, respectively.
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Table 5: Wald test for equality of coefficients across quantiles

5th Quant 25th Quant 50th Quant 75th Quant

5thQuant

25thQuant 1.8858
(0.171)

50thQuant 4.6968 ∗∗ 1.5367
(0.031) ( 0.216)

75thQuant 5.7309 ∗∗ 1.9958 0.3615
(0.017) (0.159) (0.548)

95thQuant 12.653 ∗∗∗ 8.5378 ∗∗∗ 6.5386 ∗∗ 6.2611 ∗∗∗

(0.000) (0.003) (0.011) (0.013)

† The numbers present F-statistic of equality of the slope coeffi-
cients at IUi = γτ + δτΠi + vτ across quantiles with (1, N − k)
degrees of freedom.

‡ The associated p-values are reported in parentheses.
? ∗∗∗, ∗∗, and ∗ denote significant at 1%, 5% and 10% level, respec-

tively.
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Figure 1: Effect of an increase in inflation uncertainty under quantiles
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Figure 2: Effect of an increase in inflation under quantiles
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