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Abstract

Based on the recursive preference approach, the dynamic and global properties of the
two-country open economy are examined when there exist one good used either for
consumption or investment, and two inputs of labor and capital, with capital being
freely and costlessly traded internationally. First the world’s consumption is shown to
increase with the increase in world’s capital. Second, employing Devereux and Shi
(1991)’s model, the home country which is more patient than the foreign country is
shown to consume less than foreign country in the growing world economy, while in the
decreasing world economy either, the home consumption remains less than that of the
foreign country, or if the home consumption is larger than that of the foreign country
initially then this difference is reversed after a while and reversed difference remains
thereafter. Third, assuming further the Cobb-Douglas type production function, and
assuming that the home country has technological superiority, the home country is
shown to export good and to remain debtor throughout transitional period in the
growing world economy, while in the decreasing world economy the possibility of
different trade patterns arises. The rapid economic growth of some Asian countries such
as Japan and Korea led by exports of good as engine of growth seems to be explained

by our recursive preference model.

Tadashi Inoue, Faculty of Economic Science, Hiroshima Shudo University
1-1-1 Ozukahigashi, Asaminami-ku, Hiroshima 731-3195, Japan

e-mail; inoue@shudo-u.ac.jp



I. Introduction

This paper tries to show the global properties of the two country open economy where
the representative consumer maximizes not additive but recursive utility overtime with
perfect foresight, under free capital mobility between two countries.

First the global stability of the world growing economy is derived. (Theorem 1).
Next the consumption of the world is shown to increase globally with the increase in the
world’s capital (Theorem 2). Third, by restricting our model to Devereux and Shi
(1991)’s simplified case, the consumption of the home country which is more patient
than foreign county is shown to be less than that of the foreign country in the growing
world economy (Theorem 3), while in the decreasing world economy the possibility of
the reversed ranking is shown (Theorem 4). Next, assuming the Cobb-Douglas type
production function, the home country is shown to export good and remain debtor
throughout transitional periods in the growing world economy, while in the decreasing
world economy either the same trade patterns and asset-debt position prevail from the
beginning, or do so after a certain period. (Theorem 5).

The local stability of many heterogeneous agents with recursive preferences has
been analyzed by Epstein (1987a), and its global stability also by Epstein (1987b).
Devereux and Shi (1991) analyzed both trade imbalances and asset-debt position
overtime near steady state based on the local stability of the two-country open economy
model to whose works we owe a lot, although our emphasis is on not local but global
properties of the economy.

One exception is Palivos, Wong and Zhang (1997) who obtained the global stability
of the balanced growth path and its characteristics.

As is well known, quite a few authors have contributed to establish and elaborate the
concept and the significance of recursive utility. Here we just mention a few of them.
Uzawa (1968) first established this concept. Then Epstein (1983), (1987a) further
extended. Obstfeld (1981) explained the significance of the recursive preference by
developing models of exchange-rate and current account determination of a small open
economy, and Epstein and Hynes (1983) by making several applications for macro
economic topics respectively. Becker, Boyd and Sung (1989) provided the existence
of the optimal capital accumulation paths of the recursive preference model. Obstfeld
(1990) explained the significance of the recursive preference very heuristically and
showed the global stability of the closed model.

Relating to our present works, Becker (1980) derived Ramsey’s conjecture that in
the long run steady state the income distribution is determined by the lowest discount

rate.  Buiter (1981) analyzed the asset-debt positions of a two country overlapping



generation model. Lipton and Sachs (1983) analyzed the saving and capital
accumulation of a two-good and two country model with time-additive preference
employing simulation approach. Ikeda and Ono (1992) analyzed the dynamic
patterns of trade imbalances within one commodity and multi country framework
caused by a difference in discount rates.

In the next section, the basic framework of our model is introduced and the global
stability of two country’s open economy is derived. Basically we follow the
framework of Epstein (1987a).

I1. Basic Framework

I1. 1 Social Planner’s Optimum in Open Economy

First we investigate the global stability of the two country open economy. Following
Devereux and Shi (1991), we assume there is one consumer in each country who

supplies one unit of labor.  First we analyze the case of social planner’s optimum. Let
C=(C,,C,) be the streams of the consumption of the home country (1) and the foreign

country (2) with C, =(c,(?));, , i=L2 and ¢, is the per capita consumption of
country i at time #. Let k=k +k, be the capital of the world where k&, being the
capital of country i, i=1,2. Capital is freely and costlessly traded between two
countries implying the marginal products of capital of both countries are equalized.
Since the efficient production implies f" (k)= f",(k,), i.e., the equality of both
countries’ marginal products of capital given k=k +k, , we can express
S (k) :f1(k1)+f2(k2) with  f'(k) :fvl (kl) :fvz (kz) where fi(ki) being  the
production function of country i, =12 .  f, satisfies the Inada condition.

f'(k)=f,"(k;), i=1,2 implies that the capital of each country moves in the same
direction, ie., k,>0&k, >0 k>0. The social planner tries to maximize the

following utility;
u; (¢;(7))dr (1)

> 2, (0)U,(C) =3 &, (0)]0‘” v (c, (t))e’fo dt
subject to the law of motion of capital

k=f(k)y-X,c )
and

a; =—a,; (u;(c,(?)) 3)

~[uite,(epr

where «,(t) =, (0)e * , i=12 and «,(0) being the weight of the utility of

the country i, Ul-(C,-)=va,-e’j“"‘”dr, where v,(c,)<0 and u,(c,)>0 being the



instantaneous felicity functions of country i, i=1,2. Recursive preferences are

expressed by the endogenously determined intertemporal substitution rate of
t

consumption J.O u;(c,)dr. v, and u, are assumed to satisfy the regularity conditions

for the existence of the optimal path (C,,C,); v,'(c)>0, log(—v,) being convex,

—oo<inf, ,v,(c)<sup, ,v,(¢;)<0, u' (¢)>0, u"(¢,)<0 and inf ,u,(c)>0,

>0 Vi >0 7
i=12 . (See Epstein (1987a), Lemma 1.) Furthermore u,(c;) > +o as

¢, >+, limu'(¢,)=0 and limv,(c,)=0 are assumed. Let H be the

Hamiltonian
H=Y av,(c)+A(f(k)=) c)=D daulc,)
and we obtain the first order conditions,
A==f"(k),
¢i ==V, +ou, ,i=12
ayv,'(c,)-A-dau,'(c;)=0,i=1.2
and the transversality conditions
Ak —>0 as t—>o®
and
ga, >0 as t—>0, i=12.
Here by letting ¢, =, / A , (3) and (5) are rewritten as
= (f' (k) —u,(c,)),i=12
and (7) as
;') =1,i=12.
By differentiating (11) with help of (6) and (10), we obtain
& ==~ 4u,)v,"~4,u," )" (f*-p)
where
p; =, —vu, Yv,'~gu,") " >0,
It is known that equation (6) implies that ¢, is expressed as
4,0 =", (e g <0, i =12

which is the utility of the i country’s consumer starting from initial time #>0.
I1. 2 Equivalence between Competitive Equilibrium and Social Planner’s Optimum

Here in II. 2 we define competitive equilibrium in the open economy and first how it

implies the social planner’s optimum. In the competitive equilibrium, the consumer of
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country i tries to maximize

UC)=[ vi(e (e
subject to (3) and the budget constraint

_-[qu(C, (.v))dsdt, = 1’2 (15)

m,=rm,+w,—c;, i=12 (16)
where m, >0 is the non-human wealth (abbreviated wealth) held by consumer i which
is an equity claim on capital. Equities are traded internationally so that their interest
rate is equal to rental price of capital, » by arbitrage conditions. From the profit
maximization of firm

r=f'(k)=f"(k),i=12 (17)
and

W= f(k) =k £ (k) .i=12 (18)
hold where w, is the wage rate of country i. (17) implies that the capital of each

country moves in the same direction, i.e., k, >0<k,>0. Here

2m =2k =k (19)

holds by definition. The utility maximization is solved by forming the Hamiltonian;

H =av(c)+ /Tl.(rm,. +w, —c)— Jiaiui(ci) ,i=12 (20)
and by obtaining the first order conditions;

ay,(¢,)~ A —gou'(c)=0,i=12 1)

d=—dr,i=12 (22)

Zi =-v, + qz.ul. ,i=12 (23)
and the transversality conditions

Am, =0 as t—w 24)
and

ga, >0 as t—>ow,i=12. (25)

Here we note ﬂ: and /Tz to be proportionate from (22) and hence
A, = pl,, where >0 being constant. Let AL, =A4, & =a,/B, & =a,, and

%=¢i ,i=12 . Then (21) is rewritten as av,'-A-¢du,'=0 and

a,v,'—-A—¢,a,u,'=0 . Here by replacing o, and «, of the social planner’s
optimum by @, and &,, we observe that the first order conditions (21), (22) and (23),

the transversality conditions (24) and (25) of the competitive equilibrium satisfy those



of the social planner’s optimum (i.e., (5), (6) and (7), and the transversality conditions
(8) and (9)). Here the budget constraint of the competitive equilibrium (16) implies

the law of motion of capital (2) in view of
D rmi+w) =Y (rk +w,) = fi(k)=f(k).
In short, we observe that the competitive equilibrium implies the social planner’s
optimum. Conversely by letting ¢, =@,i=12, o, =p& , a,=&, and hence

A=A4,1pB=A4,, we observe that the social planner's optimum implies the competitive

equilibrium.

I1. 3 Existence and Uniqueness of Stationary State of Competitive Equilibrium
The stationary state of the competitive equilibrium is obtained by letting
k=0,4 =0, 4 =0, ¢, =0 and m=0. Hence we obtain at the stationary state E,

fR)=Y ¢ =c,
u(e)=1"(k)=p,, i=12
¢.=v,(c))/u,c), i=12

and
m; =(c,—w)/r, i=12

Fig. 1

From (27), we observe ¢, =c,(k) with ¢,'(k)<0, i=12 and then from (26), the

existence and the uniqueness of the stationary state £ is immediate. We denote

c,=C, ¢ =¢,m =m,i=12 and k=k to be their respective values at the stationary

state E. (Bar - sign is attached to denote the value at the stationary state E.)

I1. 4 Local Representation of Competitive Equilibrium
Next, to show that the stationary state is locally a saddle point, we linearlize the above
differential equations (12), (6), (2) and (16) of competitive equilibrium around the

stationary state £, and obtain

(26)
@27
(28)

(29)



¢ 0 0 —-a 0 =b 0\ c¢-c
¢, 0 0 0 —-a, -b, 0| c,—c
¢ _| & 0 r 0 0 0} ¢ _¢71 (30)
, 0 —e, 0 7 0 0| ¢-9
k -1 -1 0 0 o0l k—k
m, -1 0 0 0 Ff" 7r)\m-m,

where a, =-(v,"-gu,") "'Fu,'>0, b =-(v,'-gu," Yv,"-gu.")" f">0 and

e, =v,'—gu,'>0 ,i=12 (a,, b,

1

and e, are evaluated at E), i, =p, = f'=f'(k)

=r,i=1,2(See Appendix I.) and F, =m, —k, is the home country’s net foreign asset
holding.
Let A4 and B be respectively the coefficient matrix of (30) and its 5x5 upper and left
submatrix. Then we obtain for
|A—a)l|=(F—a))(B—a)I) and hence for |B—a)1|=0 (31)

two negative @, and @, such that

o, = (—F —[F2—44)/2<0,i=12 (32)

where A, and A, are two negative solutions of

h(A) =2 +(ae, +a,e, +b, +b,)A+a,a,ee, +e,a,b +eab, =0
with 1, <4, <0.(See Appendix L)Y Then w,<w, <0 follows. In short we can
conclude that there exists locally a two dimensional manifold of the optimal path of (¢,
¢, ¢, &,,k) which converges monotonically to the stationary state as a saddle point.
Here the local representation of the optimal path is given for A, #—ae, ,i=12, by

¢ = =_A1 bl(r_a)l)ewlt _Az b] (r_a)Z)emZt (33-1)
A +ae, A, +ae,
¢, —C,=—A b,(r _wl)ew" ) b, (7 _a)Z)ea)zt (33-2)
A +a,e, A, +a,e,
n € b oyt € b Wyt -
¢1_¢1:_1111 e — 4, i, (33-3)
 tae A, +ae,
4, _52 -4 e,b, e — 4, e,b, o (33-4)
A +a,e, A, +a,e, (33.5)
k—k = Ae”™ + Ae™ )
and
F w1, F w1,
m1 _n_’ll — _A1 bl + lf (k) ea)lt —A2 bl + lf (k) ewzt . (33-6)
A +ae - A, +ae T-o0,

For A, =-ae and A, =-ae, —b —b,



¢, —¢, =Ae™ + A4, b (7 —m,)e™ (34-1)
1 2
c,—C,=—Ae™ + 4, b, (7 —m,)e™ (34-2)
b, +b,
b~ =4 Dot + A, eb e™ (34-3)
a, b, +Zf72
e e (34-4)
—fy = A, e 4 gy 2o
¢2 ¢2 1 a2 2 bl +b2 (34 5)
k—k = A,e™ ]
and
A F "
m,—m, =——e" +A2[ b -1 S je"’zt (34-6)
r—o, b+b, r-w,

where A4, and 4, are determined by the initial values of k£ and net foreign asset

holding F;

—b, (A +ae)+b (A +are) — F L F—0) " —(F-w,)"}
for A, #-ae,i=12

A = — T
{mlo —m, —(k, _k)( b _Flf (k)J}(r—a)l)

b +b, r-w,

for A, =-ae,, A, =—ae, —b, —b,
b/ + a0+ 1) I — @) |k, — ) = myy + 7, (36-1)
—b (A +ae)+b, (A, +ae) - F [ ()(F-0) " - (F-0,)"}
4, =14 for A, #-aye,,i=1.2
k,—k for A =-ae,, A, =—ae, —b —b,

where ko and m are respectively the initial values of k=4k(t) and m, =m,(¢), i.e.,
ky=k(0) and m,, =m,(0).

First we note that ¢=c, +c¢, is locally an increasing function of k. In fact for
A #=-ae ,i=12, from c—c=A4(F-w)e™ + 4, -w,)e™, (33-5) and
0, <, <0, we obtain (c—E)/(k—l?)—)(F—a)l)>0 as t—>o. Here
4 +ae)A +a,e,)+b (A +a,e,)+b, (L. +ae)=h(1)=0 ,i=12 is employed.
Similarly for A, =-ae,, 4, =—ae, —b —b,, from c—¢=A4,(F—w,)e”™ and (34-5),
we obtain (c—¢)/(k—k)=(F - ®,)>0. Next we generalize this local property of ¢

as an increasing function of k into global one.
As for the local representation of ¢,,i=12 as a function of k, for A, #—ae, ,i=1.2,

myy =1, + b, (A, +aje))+ F, £ () I(F = ,) (ky — k) (35-1)

(35-2)

(36-2)



we note from (33-1), (33-2) and (33-5), (¢, —El)/(k—E) - -b,(¥—w,) /(4 +ae) and
(c, =&, (k—k)——b,(F—@,) (A, +a,e,) as t—>oo . Since (L +ae )i +a,e,)

<0 holds for A, #—a,e, (See Appendix I), c,'(k) and c,'(k) are seen to be of
opposite sign. Similarly for A, =-ae, and A,=-a,e,—b —b, , recalling
™™ 50 as t—o, we note (¢, —¢,)/(k—k)—>+wo (resp. —o0) if 4,/4,>0
(resp. <0) and (02—52)/(k—l€)—>—oo (resp. +00 ) if 4,/A4,>0 (resp. <0), and
hence ¢,'(k) and c,'(k) are of opposite sign.

II1. Global Stability of Competitive Equilibrium
I11. 1 Global Properties of the Consumption Path C
Next, we show the global stability. Here we first show that ¢, and ¢,, i=12 are

continuously differentiable functions of k.
Let X =(t,¢c,,c,,¢,,0,,k) be the solution path given by the system of ordinary

differential equations (2), (5) and (11);

k=f(k)~(c,+¢,) )
¢5i ==v,(¢))+du,(c), i=12 Q)
éi = _(Vi ’_¢iui')(Vi"_¢iui")_l(f'_pi (ci’¢i ), i=12. (12)

Then employing the fundamental theorem of ordinary differential equations (see, e.g.,

Hurewicz (1958, Theorems 8, 9 and 11, pp.29-32)) 2 we express c"i/lé=dcl./dk=

- (Vi '_¢iui')(vi"_ iui")_l (f'_pi)/(f(k)_ ¢ _62)’ and ¢i /k = d¢i /dk = (_Vi + ¢iui)

/(f(k)=c,—c,), i=12 as functions of k, ¢, and ¢,, i=1,2 and by replacing the
role of ¢ with k&, we obtain ¢c,=c,(k, ¥)) and ¢ =¢.(k, ¥)), i=12 to be
continuously  differentiable in (k, ¥;) for &k ¢ and ¢, such that

k= f(k)—(c,+c,)#0 where Y, is the initial value of Y =(c,,c,.4,, ). Here we
note both c¢,(k, ¥;) and ¢,(k, ¥;), i=12 to be uniquely expressed for each
k=f(k)—(c,+¢c,)>0 and k= f(k)—(c,+c,)>0 by construction. Then it is

possible for both ¢;(k, Y¥,) and ¢.(k, ¥,) to have two values for a given k&. Bearing
this in mind, however, we retain the same expression, c;(k, ¥,) and ¢, (k, Y,), for

simplicity. It is immediate to show the functions ¢, and ¢, are continuously

differentiable in (k,Y,) for k= f(k)=(c,+¢c,)=0 as well except at k= k and



hence the functions ¢, and ¢ are continuously differentiable in (k,Y,) for all

k>0 except k=k *
Although ¢, and ¢ are functions of k as well as t so that these are expressed as

¢, =¢(t, Y)=c(k, Y,) and ¢ =4.(t, Y,)=¢.(k, Y,), i=1,2, hence forth we abuse

notation to express as c¢; =c,(k) and ¢, =¢,(t)=¢.(k), i=12, whenever there exists
no danger of confusion.

Hence we obtain that the optimal path Y =(c,(k), c,(k), @, (k), #,(k)) converges at
least locally to ¥ =(c,(k), c,(k), 4,(k), $,(k)) = (€., C,. 6, b)) -

Next we show the global property of the optimal path ¥. To show this, we employ

the following lemmas;

Lemma 1
c1, 2,9, ,¢, and k are bounded.

Proof
¢., i=L12 isseen to be bounded from (14);

—(infu;)(z—1)

|¢i (t)| < J‘:’O|Vi (Ci (t)le_L“i(t)det < —sup V; (Ci)'[we ;20 dt
;>0

=—supv,(c,)infu,(c,)=D <+o0.

;>0 ;20
Next we show c¢;, i=1,2 to be bounded.
Suppose C is not bounded. Then either C, or C, is unbounded. We assume

without loss of generality, C, is unbounded, i.e., ¢, > as t—o. Then
k—>w as t—>wo from (2), ¢ is bounded, and g — -+ from (11) and

limv,'(¢;)=limu,'(¢;) =0,i=12 . From (10), g  cannot be infinite since

S'(k)—u,(c,)<0 for sufficiently large k£ and ¢,. (f'(k) —0 as k—>co from the

Inada conditions.) This contradiction shows both C, and C, , and hence C to be

bounded.
Now suppose k 1s not bounded. Then from (2) there exist ¢, >0 and ¢, >0 such

that
f(k)>2supC+¢g, for any 1>t .

Then we can consider the suboptimal path C' such that C'=C for #<¢ and



C'=(C',C,"H, Cl'=supC+%go, C'2=supC+%g0 for ¢>¢,. This suboptimal

path C' causes higher utility than C, contradicting the optimality of C. Hence k& must
also be bounded. [ |

Lemma 2 (Poincaré-Bendixon Theorem)

For the two dimensional autonomous differential equation system, the path (trajectory)
must become unbounded or converge to a limit cycle or to a point.

Recalling that (c,, k) =(c,(k), k) converges locally to (c,, k) and hence from Lemma

1 and 2, we observe that it does also globally. We can employ the same arguments for
c,, ¢, and ¢,. Hence we observe the following theorem;

Theorem 1
There eXiStS a SOIutiOl’l path Y = (Cl s c2 s ¢1 ’ ¢2) = (cl (kn YO ),cz (ka YO)J ¢1 (ka YO )9 ¢2 (k? }70 ))

which converges to Y =(¢,,¢y.0.6,) as k—k for a given k,, under an

appropriate choice of Y.
Now we analyze the global properties of the optimal path of c¢=c(k) employing

the system of ordinary equations (38).
Fig. 2a Fig. 2b
Although the sign of £'(k) at k=k seems not to be definite, in case of &'(k)<0

(Fig. 2a), the economy is globally stable in the sense it converges monotonically to a
stationary point, but in case of &'(k) >0 (Fig. 2b), the economy converges to a limit
cycle or to a point (as a spiral node) as shown by Lemmas 1 and 2. However as shown
above in (33) and (34), the stationary point is locally a stable saddle point.
Furthermore from the above arguments, in particular we obtain for the world’s

consumption c;

Theorem 2
For the open economy, the optimal path of world consumption ¢ and world per capita
capital k is globally stable so that

c=c(k) with k—>k as t— o monotonically and ¢'(k)>0.

I1I. 2 Characteristics of Consumption Path
Here we investigate the characteristics of the consumption path of both countries. The
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felicity function v,,i=1,2 is identically equal to -1, i.e.,
v (c,)=v,(c,)=-1.
The felicity function u; reflects that the home country is more impatient than the
foreign country, i.e.,
u,(c)>u,(c) forany c.
We specify
u,(c,)=log(c,+a)+y, ¢ and >0
and
u,(c,) =log(c, +a)

following Devereux and Shi (1991). Here wu, satisfies the regularity conditions

1

mentioned before. (v=-1 also satisfies their conditions.) This specification implies
that there is no distributional effects (i.e., marginal propensity to save out of wealth is
the same), yet time preference rates of consumption are different between two countries.
For y>0, u(c)=u,(c,)=p= f(k) implies ¢, <c¢, . Furthermore, under this
specification a,e, =a,e,, A, =—ae, and A,=-ae —b —b, hold. Hence we show
¢, <c, holds always.
Fig. 3a Fig. 3b
a for the local properties of the slopes of ¢,, i=12 curves, we have seen already that
¢', (k) > —oo(resp. +o)and c', (k) —> 4o (resp. —o0)as k « k

if and only if 4,/4,<0 (resp. >0). Fig. 3a (resp. Fig. 3b) corresponds to
A /A, <0 (resp. >0). First we are concerned with the case of growing world
economy, i.e., k< k.

First we show that for k <k, sgn ¢,'(k) (resp. sgnc,'(k)) changes only once
while sgnc,'(k) (resp. sgnc,'(k))>0 holds always for 4,/A4, <0 (resp. A4,/4,>0).

Since c¢'(k)>0 holds globally, c(k) >0 as k—>0 and ¢, <c and must
hold always, we observe both ¢, and ¢, must decrease to zero as k — 0 for both

A /4,<0 and A4, /4, >0 cases. Recalling that (6) is reduced to

¢i :1+¢iui(ci)7 i=12

Fig. 4
and u,(c;)=u,(c;(k)), i=12,we observe
sgnddg, /dk‘ o = sgn(— Mj =sgnc,'(k) .
; u,

11



Hence sgnd¢,/dk o> 0 ifand only if ¢,"(k)>0. By definition of ¢, =1+du.(c,),
¢5i <0 (resp. >0) if and only if ¢ =¢,(k) curve is below (above) ¢5i =0 curve as

seen from Fig. 4. Then ¢ =¢,(k) curve passes through a, and a, where ¢i =0

as shown in Fig. 4.

Hence we obtain
¢.'(k)>0=¢,'(k)>0,i=1.2

Since

¢ ==, lu" )" (k)-p),i=12 (39)
holds from (12) and p, =—1/¢, from (13)

p'(k)>0=¢,'(k)>0,i=12 (40)

where p, =p.(k), i=12,we obtain
¢,'(k)>0 f'(k)y>p,,i=12
from (39) and k>0 for k<k.
Fig. 5
Now we are ready to show sgnc,'(k) changes only once. Suppose for a
contradiction, there exists @, and a, where ¢,'(k)=0 holds. Let a, be the point

where c¢,'(k)>0 for k<k', ¢'(k')=0, c'(k)<0 for k'<k<k®> as shown in
Figs. 4 and 5. Then from (39) and (40),

k) > p,(k) for k<K',
S =p(kY),
f'(k)< p,(k) for k'<k<k?,

1K) = p, (k)
and

f'(k)y> p,(k) for k* <k<k’<k.
However since ¢'(k’)=0 holds, so does p,'(k’)=0 from (40), contradicting

p,'(k*)<0 as shown in Fig. 5. (p,'(k*) <0 must hold for p, curve to intersect with

12



f'(k) curve.) This contradiction shows f'(k)= p,(k) holds at most only one k.
Figs. 3a and 3b show respectively the cases where sgnc,'(k) and sgnc,'(k) change
only once.

From this argument, we also obtain that ¢, curve in Fig. 3a and ¢, curve in Fig.
3b never changes its sgnc,'(k) and sgnc,'(k) respectively for k< k. In fact, in Fig.
3a, for example, since c¢,'(k)>0 both as k—0 and k— k holds, if sgne,'(k)
ever changes, it changes at least twice, contradicting the change in sgnc,'(k) to be at
most just once.

Next we show ¢, curve and ¢, curve never meet except at k=0, and hence
¢, <c, holds always for 0<k<k.

First we construct the straight line of (c,,c,) which satisfies u,(c,)=u,(c,), or
log(c, +a)+y=log(c,+a) with « and y>0 , which is equivalent to
¢, +a=p(c,+a) with f=e” >1,asis shown in Fig. 6.

Fig. 6
I. ¢, curveand c, curve never intersect.
We here first show ¢, curve and ¢, curve never intersect. We first investigate the

case where 4,/A4, <0 (Fig.3a). Suppose, for a contradiction, ¢, curve and c,

curve intersect at least twice at £, and E, as shown in Fig. 7a. In Fig. 6, the curve
starting from £ passing through £, and E,, corresponds to the movement of ¢, and
c, curves starting from k =k in Fig. 7a. As seen in Fig. 6, the curve EE, E, is
below the straight line ¢, +a = B(c, +a), implying wu,(c,)>u,(c,) for t>t' where

k'=k(t') and (c|, c;)=E, with ¢/ =c,(k'),i=1,2. Inshortat E, and thereafter

(.e., t>t") u,(c;)>u,(c,) holds always and hence ¢ (¢')>@,(¢') by construction.
However as seen from Fig. 7a, at E, dc,/dk >dc,/dk holds and hence from (39) and

pi==1/¢,i=12, p,<p, or $(t')<@,(t') must hold, a contradiction. Here we

note that the above arguments hold especially when £, happens to be the origin.
Hence for 4,/A4, <0, ¢, curveand c, curve never intersect for 0<k <k .
Fig. 7b
Fig. 7b corresponds to the case of 4,/4, >0, assuming ¢, curve and ¢, curve
intersect at least twice at E, and E,, for a contradiction. Since dc,/dk >dc,/dk

holds at E, where t=t¢',
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1 uds 41

b =] e ar <[ eI ar = g ) “1)

follows from (39) and p, =-1/¢, again. On the other hand, since ¢, <c, for
t' <t<t> where t=t> holdsat E,, u,(c,)>u,(c,) for t' <t<t>,implying

—f uldédr > —j uzdédz'. (42)

Now, since dc,/dk <dc,/dk holdsat E, where t=¢’

5,0 =—[re M drs [Tl - g, 0)

u2

(43)

. - Ilzuds - tlz uyds .
must holds. Here recalling ej’ l <eI’ “ holds for ¢'<t<t*, we obtain from
(43)
© [ J"/l u]dsf-[;ulds] - [ J"/l Uyds— I uzdo]
—j e T2 ]—J. e T,
gl gl
or

—re_j‘zuldvdr > —J-TO e_j’2 ““ar. (44)
t t
By re-expressing (41) as
_ J't' I uldvdz_ J'OO J;z uldsdT <_ ! e_J.f] uzdsdz_ _ J.ioe_-[z uzdsdz_ .
t t

1 4

and from (44) we observe
_J‘ uldsd < _J‘ uszdT ’

contradicting (42). We here note that the above arguments hold especially when £,
happens to be the origin. Hence this contradiction shows ¢, curve and ¢, curve

never intersects for 0<k <k .

II. ¢, curveand c, curve never touch.
Fig. 8
Next we show ¢, curve and ¢, curve never touch. First we investigate the case
where A4,/A4,<0. For this case we can employ the similar arguments as I, with
t'=t> . Suppose, for a contradiction ¢, =c, at E =E, and ¢ <c, but
u,(c;)>u,(c,) fortwith 0<¢<+oo ascanbe seenin Fig. 6 with E, =E,. Then by
construction
¢1 (tl) > ¢2 (tl)
must hold. However at E, =E, as seen from Fig. 8 dc,/dk =dc,/dk holds, and

hence
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¢1(t1) = ¢2(t1)

from (39) and p,=-1/¢,,i=12, a contradiction. This shows ¢, curve and c,

curve never touch as shown in Fig. 8.
Next we investigate the case where 4,/4, >0. Recalling the slope of ¢3i =0 1s

positive if and only if ¢,'>0, and from Fig. 4, we obtain the two curves ¢, (k) and
Fig. 9
¢,(k) for case A /4,>0 as drawn in Fig. 9 assuming two curves meet at E,.
( ¢,(k) curve is positively sloped from ¢,'>0 for 0<k <k and ¢, (k) curve
changes its sign from positive to negative just once as k increases up to k. Then
employing Fig. 4, we can obtain the slopes of two curves as drawn in Fig. 9.) Hence
,(t)=¢,() , te., (two curves ¢ and ¢, meet at E ) is obtained from
dc,/dk =dc,/dk at E, as drawn in Fig. 8, (39), and p, =-1/¢,,i=12. Here the
slope of @, curve is higher than that of ¢, curve, i.e.,
0<dg /dk <de¢,/dk atE;

comes from u, >u,, ¢, =¢, and ¢fl. =1+¢u, >0 at E,. This implies at k' slightly

smaller than &' such that k'=k(t")

$ (') > 4,(1')
must hold. However then from Fig. 8(Fig. 8 holds for both 4,/4, <0 and
A/4,>0.),at k'

dc,/dk <dc,/dk
must follow, implying 0<(c, +a)(f'—p,)<(c,+a)(f'-p,) from (39), and hence
(f'-p,)< (f'-p,) from ¢, <c, at k'as shown in Fig. 8. This further implies
p,<p, and hence ¢(')<¢p,(t') from p,=-1/¢, , a contradiction. This
contradiction shows ¢, curve and ¢, curve never touch for 4,/4, >0.

In short, we obtain

Theorem 3

Let v.(c;,)=-1, i=L2, u,(c,)=log(c,+a)+y, and u,(c,)=log(c, +a)+y where
a and y>0. Let k<k,i.e., the world economy be increasing.

Then

(1) the more patient home country’s consumption c; is always less than that of the
foreign country.

(2) If the consumption of both countries increases as the world’s capital stock increases,

then it continuous to increase after a while, but one country’s consumption starts
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decreasing while the other country’s consumption keeps increasing.
(3) If one country’s consumption decreases, while the other country’s consumption
increases, then this consumption pattern remains unchanged.

Next we show the corresponding results for the decreasing world economy, i.e.,
k<k.

Theorem 4

Let the world economy be decreasing, i.e., k <k .

Then

(1) the more patient home country’s consumption c; is always less than that of the
foreign county, or if the home country’s consumption is larger than that of the foreign
country, then the home country’s consumption becomes less than that of the foreign
country after a certain time.

(2) If the consumption of both countries decreases as the world capital stock decreases,
then it countinues to decrease after a while but one country’s consumption starts
increasing while the other country’s consumption keeps decreasing.

(3) If one country’s consumption decreases, while the other country’s consumption
increases, then this consumption pattern remains unchanged.

Proof (See Appendix II)

The only difference from increasing world economy’s case is the possibility of the
change in the amounts of consumption between two countries although this change
occurs only once. As shown later this possibility gives rises to the possibility of the
change in trade pattern and asset-debt position.

Theorems 3 and 4 show the significance of global analysis in comparison with the
local analysis. By restricting to the local analysis, we observe only the difference in
the direction of two countries’ consumption path. However by generalizing to the
global analysis we observe that when the starting points is not close to the stationary
state, this direction is the same initially, and eventually the change in the direction of
only one country occurs toward the stationary state. Such a non monotonicity of one
country’s consumption while monotonicity of the other country’s consumption with
respect to world capital increase is shown to be observed only by global analysis.

Next we investigate the trade patterns and asset-debt positions.

II1. 3 Trade Patterns and Asset-Debt Positions
Henceforth we specify the production functions to be of Cobb-Douglas type, i.e.,
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fik)=0ki,0>1 and 0<&<1
and (45)
Srlky) = kz‘f
That is, the home country is assumed to be technologically at least as good as the
foreign country, 6>1.
Next we show when ¢, <¢, holds

ex, = fi(k,)—¢,—k, >0, (46)
i.e.,, the home country’s export which is the home output f,(k,) less the home

consumption ¢, and the home investment lél is always positive if the home

consumption ¢, is less than that of the foreign country. Since f,'(k))= f,'(k,)=r
holds always, we obtain k,/k,=60""" =n/(1-n) where n=6""°/1+ ")
with 7'(@)>0 and 7n=1/2 for 6=1. Then (1-n)k, =nk, and hence

(1—77)l€1 = 17/é2 and kl = 771€ from k,=nk and k,=(1-7k . Here we note
fk)y=0n""k* =(1-n)*"k*. Then it follows that ex, = f,(k,)—c,—k = f,(k)—¢,

_Uk = fitk)—c, —=n(fi(k)+ f,(k) — ¢, —c,) = =n) fi(k) —nf,(k,) —(1—=m)c, +ne,

=—(1-n)c, +nc, in view of f,/f,=0(k k) =60"" =n/(1-5). Since ¢ <c,
and 7/(1-7)=1 hold, ex, >0 follows.

Lastly we show
F @)= —J‘:O ex,0(t, r)dt (47)
where F, =F(t)=m,—k, >0(<0), i.e., the net foreign asset (debt) holding by the

J"f(s)

budget constraint (16) and F, = m, —k,, we obtain

~[r(s)ds ) )
home consumer and 6(¢,7)=¢ , the time discount rate. In fact, from the flow

Fl =n'11—/é1 =rm1+w1—cl—l<'t1 =r(E+k1)+w1—cl—kl =rF, +f1(k1)—cl—k1
=rF, +ex,

in short

F =rF +ex,. (48)
From the transversality condition /Tl.m,. —0 as t—o,i=12 (22) and Ak —>0 as

t—>oo(7,1=/@=/1 and hence A(m,+m,)—>0 as t >0k >0 as >0
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Ak, >0 as t—>o,i=12)imply AF, -0 as t—>o ,i=1,2. Then from (22), we
obtain

1= 0¥ — 700,10, i=12.

Substituting this into the transversality condition Z.Fl. —0 as t—>w,i=12, we

obtain
NPG(No-Ponz-Game) Condition: limF,6(0,¢)=0. (49)

Next by integrating the flow budget constraint (48), we obtain
!
F()=F(1)0(.1,)+ | ex (. 1)z

By letting ¢, — oo, and from NPG, we obtain (47).

Now we obtain
Theorem 5
(1) In the growing world economy, the more patient home country remains an exporter
of good as well as debtor throughout transitional period.
(2) In the decreasing world economy, if the more impatient home country’s
consumption is less than that of the home country initially, then this difference remains
thereafter and the home country remains an exporter of good as well as debtor
throughout transitional period. If the home country’s consumption is larger than that
of the foreign country, then after a certain period, this difference is reserved, and the

home country becomes an exporter of good as well as debtor and remains so thereafter.

We note that Theorem 5 holds even if there exists no technological superiority of the
home country, i.e., even if & =1. In this case such characteristics of trade patterns and
asset-debt position arises purely from the differences in the time preference rate of
consumption. Furthermore with =1, ex>0 if and only if ¢, <c¢, holds, i.e., the
home country is an exporter of good if and only if the home consumption is less than
that of the foreign country. Furthermore the conclusion (1) of this theorem seems to be
consistent with the rapid economic growth of some Asian countries (including Japan
and Korea) led by export as engines of growth. In these countries saving propensities

are higher reflecting lower consumption.

IV. Concluding Remarks

It is not difficult to introduce government expenditure into the model as far as it does
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not affect consumption nor production. Also to generalize into multi-country model
would not be so difficult as far as felicity function u, is of the same type as assumed in
the last section.

Perhaps one of the most crucial assumption for the cases of trade patterns and
asset-debt position is the Cobb-Douglas production function. In fact owing to this, the
home countries’ capital k, is always propotional to foreign countries’ capital k,, i.e.,
ke =n(=m)"k,.

This does not hold even if we generalize production function into C.E.S. type. One
of the merits of introducing recursive type preference in the open model is that we can
introduce capital accumulation into the model. In fact if we restrict to different, not

endogenously determined but fixed time preference rates p,,i=12, then we have to

assume away capital accumulation to let the model work as done by lkeda and Ono
(1992), for with capital accumulation, p, = f '(k),i=1,2 must hold at the stationary

state.

We have tried to send two main messages in this paper. One is to show the
characteristics of the optimal consumption path, trade patterns and asset-debt positions
in the globally dynamic context. Second is that the trade surplus and foreign debt of
the more impatient country is the results of these countries’ optimal choice. Hence if
so, it does not make sense trying to let this country realize trade balance under the cause

of “fair trade”.
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Appendix I
I. Derivation of (30)

Let ¢,, ¢ and k be linearlized around the stationary state E; then we obtain

¢ =—a,(¢,—4)-b(k—k)

where  —a, = (v,'"-du,"Y,"-du,")" p, -u,'(v,'-pu," )" =(v,"~du,") ' Fu,'<0  from

pi=r, i=1L2, and p, =pu'(y “gu,)", and b ='~-gu,Y,"~gu,") " f">0

observing p,, = {(“1"1"_‘}1“1")("'1 —pu,") = (uv, v, ')(Vlu_¢1”1")}/(v1 —¢u,")* =0 from

(uw"=viu," )V, '=gu,") — (v, '=viu, Y, "—gu,") = {”1 v "= "=(v"~gu,")
(”1"1 ’_Vlulv)(vl - ¢1u1')_1 }(Vl - ¢1”1') = (from (13) = {ulvln_vluln_ﬁl (Vl "_¢u1")} (Vl _¢1”1 )
=(from u, =p, atE)=—u,"(v,—p,-¢)(v, —pu,") = (from (6), ¢ =v,/u,=v,/p, at
=F) =0.
Similarly
¢, =—a,(¢, _@)_bz(k_];)

where —a, = (v,'"=gh,u, )(v,"~1t,") " P, 11, (v, o1, ) = (v, "~hyu,") " pou,'< 0,
Pag, = Py, (v, '_¢2“2')_1 , b= (Vz'_¢2”2')("2"_¢2”2")71f">0 and Pae, =0. For ¢i
and k, we obtain

¢2i =—€i(Cl. _a)+12(¢1 —51)

and k=—(c,—¢)—(c,—G)+ f'(k)(k—k) where e =v,'—gu,'>0 and @ =p, =

f'=r. Lastly for m,
my =—(c, _El)—i_F'lf"(k_];)J’_F(ml —m,)
where F|; =m, —k, >0(resp.— F;) being the home country’s net foreign asset (resp.
debt) holding of F, >0 (resp. —F, >0). Here we note o(w, +rm,)/ 0k =
(O(w, +rm,)/ Ok,)-dk,/ dk = 0(f, =k, f,'+ f,"m,)/ Ok, -dk, | dk =
F f"dk, /dk=F f"f" f,"=F f" from f,'(k)=/f,"(k,)=f"'(k). Then we obtain
(30),
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¢ 0 0 —-a 0 =b 0\ c¢-c
¢, 0 0 0 —-a, -b, 0|l c,—c
¢1 _ —€ 0 r 0 0 0 ¢1_¢71
, 0 —e O r o 0|l ¢,—9,
k -1 -1 0 0 ro 0|l k-k
m, -1 0 0 0 Ff" 7r)\m-m,

Let 4 be the coefficient matrix of (30). Then we observe

f(@)=|4-0l|=F-0)B-ol) = (F-0) g()

where
g(w)=0’(F-w)* + (ae, +a,e, +b, +b,)o(r —w)+a,a,ee, +
e,a,b, +eab,.
Let
A= —m)
and

h(A) =2 +(ae, +a,e, +b, +b,)A+a,a,ee, +e,a,b +eab,.
Then by construction

hao(r — o)) = g(w)
holds. Next by expressing h(A) as

h(A)=(A+ae +b)A+a,e,+b,)-bb,

(A-1)

(A-2)

(A-3)

(A-4)

and letting B =max(-a,e, —b,,~a,e, —b,)<0 and B= min(-a,e, —b,,—a,e, —b,) <0

we obtain for the two negative solutions of A(4)=0, A4 and A, such that
Fig. A.1

A, <B<B<,<0

holds. (See Fig. A. 1.)
More specifically

(1) 0<ae <a,e,
h(—a,e,) <0< h(-a,e;) holds.
Then it follows that
A, <—a,e, <A <—ae <0
) 0<a,e, <ape
Then

h(-a,e;) <0< h(-a,e,) holds. Hence

A, <—ae <A <-a,e, <0
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(3) ae =a,e,.
Then 0>4 =-ae >4, =-ae,-b —b, (A-7)
follows.

Devereux and Shi (1991) specified

v,=—1 and u,(c;)=0, +log(c, +a), i=12

with 6,>06,>0 and a>1. Then age =1/, i=12 follows. In short (3)
corresponds to their case.

Now let @,, i=1,2 be the two negative solutions of g(w)=0,i.e.,

A=w,F-w,), i=12. (A-8)
Then we observe
P74, . (A-9)
wi:f’ l:1,2

with @, <®w, <0. Now we can conclude the stationary state E is locally a saddle

point with two dimensional manifold of optimal path.
Now we show the local representation of ¢;,, ¢, i=1,2 and k near the stationary

1

state.

II. Local Representation of c,, ¢, i=1,2, kand m,

i

Let (fy5 Hins > 125 61 @) satisty

-0, 0 —-a, 0 —-b, 0 .

0 -o 0 -4, -b, 0 Hip

-¢ 0 7r-o 0 0 0 || 7 _0, i=12 (A-10)
0 —e 0 r—o, 0 0 7,

-1 -1 0 0 r—, 0 fd

-1 0 0 0 Ef" r-o )\ o

Then we obtain the following equations;

- t ot .
¢, —¢; =Ape” + Au, e, j=1,2

=y = Amye” + Ay, e, j=1,2 (A-11)
—k = A& e™ + A8 e™,

and

my —my, = Age” + Az(”zewﬂ-
From (A-10), we obtain, for i=1,2

(1) — o,y —1,a,—bg; =0
(i) — 0,y — 1,0, —b,&, =0,
(iii) —epy +(r—o)n, =0,
(iv) —ey iy, +(F—w)n, =0,
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(v) — Uyl +(F—0,)5,=0.
and

Vi) = s+ B E)E +(F0)p =0, =12

From (i) and (ii1) by deleting 77, we obtain
— o,y =b& —ae u, (F-w)=0

or
w,(F—w,)+ae
— Uy ———— —=b¢,,
-,
or
. A +ae
(vii) — g ———=b¢,.
F—o,

1

For (1) and (2), A, #—a,e;, i=1,2 from (A-5) and (A-6), and hence we may assume

& #0, i=1,2 from (vii). Hence for (1) and (2), let & =&, =1.

from (1) through (vii)
c,—c =—A Mewlt -4 bl(F_a)z)ewzt
: : ! /11 +ae 2 ﬂ,z +a,e
c,—¢, =—A4, Me”’” — 4, b, (r _a)z)ewzt’
A +aye, A, +a,e,
o elbl ot elbl w,t
¢ —¢=—4 ' -4, e
A +ae, A, +ae,
- e,b ot e.b ot
¢2_¢2:_A1%€' —A,—22—e”
_ | ta,e, 12 +a,e,
k—k = Ae” + 4,e™,
and
_jl(r_a)l)_F'lf"(];) _il(r_a)Z)_Flf"(E)
m, —m, = A4 — ’ alfl e +A4,—2 h al_el
r—o, r—m,

Wyt

e

Then we obtain

(A-12)

For (3), A, =-ae, and A, =-a,e,—b b, from (A-7), implies & =0 from (vii).

Hence let g, =1 and &, =1 for (3). Then we obtain
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¢ —¢ =4e"+4, (F —m,)e™,
1 2
c,—¢, =—Ae™ +A4,——(F—m,)e™,
1 b2
— 0] eb,
—p =—A4, —Le" +4,—1—e,
¢1 ¢1 1 al bl +b2
l (ul b wyt
¢~ = +d, e,
~ a2 b +b, (A-13)
k—k = 4,e™
and
L (F-w,)-F f"(k
B o b14-b2( D)= F (k) y
m, —m, =— "+ 4, - e”
r—, r-o,

III. Determination of 4; and A4,
Here from (A-12) and (A-13), by letting ¢#=0, we obtain
Ky~ = {Al + 4, for(1l)and(2)
A, for(3),
where ko is the initial value of k=k(?),1.e., k, =k(0).

Al{ = —Flf"}mz{ - —Ef"}for(z)and(s)

o A +ae 7F-o A, +ae 7F-o,
10— M= T /m
AN —w)+ A, b—‘—_F‘—f for(3)
b+b, 7F-o,

where m is the initial value of m, =m,(¢),1i.e., m,, =m,(0).

From these, A; and 4, are determined as

my, — i, + b, (A, +a,e,) + F,f"[(F — 0,) J(k, — k) for (1) and 2
—b, [y +ae)—F [ (F—0,) " —=(F—w,) " |+b, [(4, +ae,)
4 =
{mlo —(k, k)(b b, rFifa)"z J}(V -w,) for(3).
b (A, +ae) + E S IF o)k, k) —my, + 7, for (1) and )
—b (4 +ae) - Ff"(F @) —(F—0,)" |+ b (A +ae,)
4, =

k,—k for (3)
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Appendix 11

Proof of Theorem 4
I Case 4,/4,<0
Fig. A2.a

Fig. A.2.a shows the diagram of f'(k), p, and p, for 4,/A4,<0. Recalling
(k)= p, = p, holds at the stationary state and p, > f'(k)> p, holds for k<k
near k, we obtain p, < f'(k)<p, holds for k>k mnear k from ¢, <c, and
¢, >c, with ¢,'(k)<0 and ¢,"(k)>0 for k near k (k>k). In Fig. A2.a, p,
curve intersects with f'(k) with p,'(k')=0 at the intersection (k =k'). If this ever
occurs, then the change in ¢,'(k) occurs at this intersection. Furthermore since c,
curve is negatively sloped at the k> k' as shown later, p, curve is positively sloped
after k> k', implying these two intersects only once at k£ =k".

For p, curve to intersect with f'(k) curve, p,'(k)=0 must hold at the
intersection from p,'(k)>0< ¢,'(k) >0 (from p, =-1/¢,(k)) < c,'(k)>0(as shown

below in Fig. A3) <¢ <0 (from k<0) < p. < f'(k) (shown later), which is

impossible since f'(k) is negatively sloped. In short p, curve never intersects
with f'(k) curve except at k=k. This shows ¢, curve is positively sloped for
k>k.

Fig. A.3
Fig. A3 showsa ¢'(k)>0<¢,"(k)>0, i=1,2 tohold. Recalling
de,
sgn—- =sgnc,'(k),
g o gne,'(k)

and ¢3i > 0 (resp. < 0) above(resp. below) ¢3i =0 curve, we can obtain ¢ (k) curve.

By construction
' (k)>0=¢,'(k)>0, i=1,2.
From the above arguments we can obtain ¢,, i=1,2 curve as drawn below;
Fig. A4.a
Although ¢ and ¢, curve are shown to intersect at £, this occurs only when p, curve
intersects with f'(k) curve. If not, then p, is always less than f'(k) for k>k
and hence c; curve is negatively sloped for k >k . Since ¢, curve is positively sloped

always for k >k , these two curves never meet when ¢; curve is negatively sloped for

26



k>k. We can show these two curves meet just once at E;, for k >k by way of
contradiction supposing two curves meet at £, north east of £}, as shown in Fig. A.5.
Fig. A.5
We can employ the arguments for Fig. 7b once again from (41) to (44) with
interchanging the role of £}, with E;, and obtain contradiction.
Next we show that ¢; curve and ¢, curve never touch.
Fig. A. 6 Fig. A.7.a
Suppose not. Then ¢; curve and ¢, curve touch at £; as shown in Fig. A. 6. At Ej,
¢, =¢, holds from dc,/dk=dc,/dk, (39) and p,=-1/¢,(k), i=L2. ¢ =c,
implies u,(c,) >u,(c,) and hence
0<dg,/dk <dg, /dk atE,,

from (6), v,=-1, i=12 and k<0. (¢,'(k)>0<=¢,'(k)>0,i=1,2 and hence

$.(k)=1+¢u <0). Let k' be slightly smaller than k' such that k'=k(#'). Then as

seen from Fig. A.7.a, ¢,(t')<¢,(t') < p, < p, holds. From A. 6, we obtain
0<dc,/dk <dc,/dk at k=K', implying
0> (c, +a)(f'=p,y) > (e, +a)(f'—p,)

from (39) and £ <0. Hence from ¢, <c, it follows that

0> f'=p, > f'=pr = py < py,
a contradiction. This shows ¢; curve and ¢, curve never touch. Hence we obtain the
results of Theorem 4 for case 4,/ A4, <0.

II. Case 4,/4,>0
Next we consider case A4,/ 4, <0.

Fig. A.2.b
For this case the role of p, and p, are interchanged as shown in Fig. A.2.b.

Fig. A.4.b
The slope of ¢; curve is positively sloped for k >k, while slope of ¢, curve may
change once at k”. The two curves intersect just once at E if these ever do, but not
more than once. We can show this by way of contradiction as drawn in Fig. A.S5.
We can employ the arguments for Fig.7a.(At E, ¢, 2¢, < p <p, ¢ <4¢,.
However u,(c,)>u,(c,) for k<k<k® where ¢, =c, and k=k* at the
intersection E, implies ¢, > ¢, , a contradiction.)

Next we show ¢; curve and ¢; curve never touch. Suppose not. Then we obtain
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from Fig. A.6(Fig. A.6 holds for both 4,/A4, <0and 4,/4,>0), ¢ =¢, at E; where
k=k'=k(t)). However as seen from Fig. A.4.b with £, being touching point of the
two curves, ¢,(t,)>¢@,(¢,) must hold since u,(c,)>u,(c,) for k<k<k', a
contradiction.

Hence ¢; curve and ¢, curve never touch. Hence we obtain the results of Theorem 4
for 4,/4,>0.
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Notes

Devereux and Shi (1991) employed the technique developed by Epstein (1987a),

—a,eb -b
showing that for the upper-left 2x2 matrix of A(¥/ - A) = han 1

—b, —a,e, b,

=M, h(/1)=|M —/11| =0 has two negative solutions A, and A,, and (A-4)
holds when v,=-1, and u,(c,)=0,+log(c,+a), i=1,2, with 6, >0, and
o >1 are assumed.
Let F(X,f)eR" be continuously differentiable in X eR" and te€R and

satisfy a Lipschitz condition. Then the system of ordinary differential equations
dX/dt=X=F(X,t) has a unique solution X =X(X 0»1)  continuously

differentiable in X, and f where X is the initial value of X.

By employing the above theorems again, we observe that the solution path ¢, ,c,,
¢, ¢, and k such that ¢, =c,(t, Y,), ¢, =;Xi(t, Y)), i=12 and k=k(, Y)
are  continuously  differentiable  in @ Y, and  especially  for
lézf(k)—(c1+cz)=0. In fact let 7,, k, and ¢,, i=12 and j=12, ... be
the values of 7, kand c¢;, i=1,2 respectively such that k= fk)=(c,+c,)=0.(It
is immediate to show k= f(k)— (¢,+c,)=0 at most for countabilly many
distinct points of  (k,c¢,,c,) ) Then ¢, % and k are continuously
differentiable at ¢, , j=12 .. with 7, <+o . This implies c¢(k,Y¥,) and
¢,(k,Y,), are continuously differentiable at &, (+ k), j=1,2... Since c;(k,Yy)
and ¢,(k,Y)), i=12 are continuous in k at k=k also from (33-1) through
(34-6), we observe these are continuously differentiable in k>0 except k =k
and continuous at k =k .

For this, see. e.g. Hsu and Meyer (1968), Section 5.8.
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