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Abstract 
 
Based on the recursive preference approach, the dynamic and global properties of the 
two-country open economy are examined when there exist one good used either for 
consumption or investment, and two inputs of labor and capital, with capital being 
freely and costlessly traded internationally.  First the world’s consumption is shown to 
increase with the increase in world’s capital.  Second, employing Devereux and Shi 
(1991)’s model, the home country which is more patient than the foreign country is 
shown to consume less than foreign country in the growing world economy, while in the 
decreasing world economy either, the home consumption remains less than that of the 
foreign country, or if the home consumption is larger than that of the foreign country 
initially then this difference is reversed after a while and reversed difference remains 
thereafter. Third, assuming further the Cobb-Douglas type production function, and 
assuming that the home country has technological superiority, the home country is 
shown to export good and to remain debtor throughout transitional period in the 
growing world economy, while in the decreasing world economy the possibility of 
different trade patterns arises. The rapid economic growth of some Asian countries such 
as Japan and Korea led by exports of good as engine of growth seems to be explained 
by our recursive preference model.  
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I. Introduction 
This paper tries to show the global properties of the two country open economy where 
the representative consumer maximizes not additive but recursive utility overtime with 
perfect foresight, under free capital mobility between two countries.   

First the global stability of the world growing economy is derived. (Theorem 1).  
Next the consumption of the world is shown to increase globally with the increase in the 
world’s capital (Theorem 2). Third, by restricting our model to Devereux and Shi 
(1991)’s simplified case, the consumption of the home country which is more patient 
than foreign county is shown to be less than that of the foreign country in the growing 
world economy (Theorem 3), while in the decreasing world economy the possibility of 
the reversed ranking is shown (Theorem 4).  Next, assuming the Cobb-Douglas type 
production function, the home country is shown to export good and remain debtor 
throughout transitional periods in the growing world economy, while in the decreasing 
world economy either the same trade patterns and asset-debt position prevail from the 
beginning, or do so after a certain period. (Theorem 5).   
   The local stability of many heterogeneous agents with recursive preferences has 
been analyzed by Epstein (1987a), and its global stability also by Epstein (1987b).  
Devereux and Shi (1991) analyzed both trade imbalances and asset-debt position 
overtime near steady state based on the local stability of the two-country open economy 
model to whose works we owe a lot, although our emphasis is on not local but global 
properties of the economy.   
   One exception is Palivos, Wong and Zhang (1997) who obtained the global stability 
of the balanced growth path and its characteristics.   
   As is well known, quite a few authors have contributed to establish and elaborate the 
concept and the significance of recursive utility.  Here we just mention a few of them.  
Uzawa (1968) first established this concept.  Then Epstein (1983), (1987a) further 
extended.  Obstfeld (1981) explained the significance of the recursive preference by 
developing models of exchange-rate and current account determination of a small open 
economy, and Epstein and Hynes (1983) by making several applications for macro 
economic topics respectively.  Becker, Boyd and Sung (1989) provided the existence 
of the optimal capital accumulation paths of the recursive preference model.  Obstfeld 
(1990) explained the significance of the recursive preference very heuristically and 
showed the global stability of the closed model.  
     Relating to our present works, Becker (1980) derived Ramsey’s conjecture that in 
the long run steady state the income distribution is determined by the lowest discount 
rate.   Buiter (1981) analyzed the asset-debt positions of a two country overlapping 
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generation model.  Lipton and Sachs (1983) analyzed the saving and capital 
accumulation of a two-good and two country model with time-additive preference 
employing simulation approach.   Ikeda and Ono (1992) analyzed the dynamic 
patterns of trade imbalances within one commodity and multi country framework 
caused by a difference in discount rates. 
     In the next section, the basic framework of our model is introduced and the global 
stability of two country’s open economy is derived.  Basically we follow the 
framework of Epstein (1987a). 
 
II. Basic Framework  
II. 1 Social Planner’s Optimum in Open Economy 

First we investigate the global stability of the two country open economy.  Following 
Devereux and Shi (1991), we assume there is one consumer in each country who 
supplies one unit of labor.  First we analyze the case of social planner’s optimum.  Let 

),( 21 CCC =  be the streams of the consumption of the home country (1) and the foreign 
country (2) with C c ti i t= =

∞( ( )) 0  , 2,1=i  and ci  is the per capita consumption of 
country i at time t.  Let 21 kkk +=  be the capital of the world where ik  being the 
capital of country i, 2,1=i .  Capital is freely and costlessly traded between two 

countries implying the marginal products of capital of both countries are equalized. 
Since the efficient production implies )(')(' 2211 kfkf = , i.e., the equality of both 
countries’ marginal products of capital given 21 kkk += , we can express 

)()()( 2211 kfkfkf += with )(')(')(' 2211 kfkfkf ==  where )( ii kf being the 
production function of country i, 2,1=i .  if  satisfies the Inada condition.  

)(')(' ii kfkf = , 2,1=i  implies that the capital of each country moves in the same 

direction, i.e., 000 21 >⇔>⇔> kkk .  The social planner tries to maximize the 

following utility; 
 ∫ΣΣ

∞ −∫=
0

))((
0))(()0()()0( dtetcvCU
t

ii dcu
iiiiiiii

ττ
αα  (1)

subject to the law of motion of capital  
 ( )k f k ci i= − Σ  (2)
and 
 ))(()( tcut iiii αα −=  (3)

where ∫=
−

t
ii dcu

ii et 0
))((

)0()(
ττ

αα , 2,1=i  and α i ( )0  being the weight of the utility of 

the country i, U C v e dti i i
u di( ) = ∫−∞∫ τ

0
, where 0)( <ii cv and 0)( >ii cu  being the 



 3

instantaneous felicity functions of country i, 2,1=i .  Recursive preferences are 

expressed by the endogenously determined intertemporal substitution rate of 

consumption τdcu
t

ii∫0 )( .  iv  and iu  are assumed to satisfy the regularity conditions 

for the existence of the optimal path ),( 21 CC ; 0)(' >cvi , )log( iv−  being convex, 

0)(sup)(inf 00 <≤<∞− >> iicic cvcv
ii

, 0)(' >ii cu , 0)(" <ii cu  and 0)(inf 0 >> iic cu
i

, 

2,1=i . (See Epstein (1987a), Lemma 1.)  Furthermore +∞→)( ii cu  as 

+∞→ic , 0)('lim =
∞→ iic

cu
i

 and 0)('lim =
∞→ iic

cv
i

 are assumed.  Let H be the 

Hamiltonian 
 ∑ ∑ ∑−−+=

i i iiiiiiiii cuckfcvH )())(()( αφλα  (4)

and we obtain the first order conditions,  
 )(' kfλλ −= , 

iiii uv φφ +−= , 2,1=i   
2,1,0)(')(' ==−− icucv iiiiiii αφλα  

(5) 
(6) 
(7)

and the transversality conditions 
 
and  

λk → 0   as   t →∞ 
 
φ αi i → 0   as   t →∞ , 2,1=i .  

(8) 
 

(9)
Here by letting µ α λi i= /  , (3) and (5) are rewritten as  
 2,1)),()('( =−= icukf iiii µµ  (10)
and (7) as 
 2,1,1)''( ==− iuv iiii φµ .  (11)
By differentiating (11)  with help of (6) and (10), we obtain 
 ( ' ' )( " " ) ( ' )c v u v u fi i i i i i i i= − − − −−φ φ ρ1  (12)
where 
 ρ φi i i i i i i iu v v u v u= − − >−( ' ' )( ' ' ) 1 0.  (13)
It is known that equation (6) implies that φ i  is expressed as 
 ∫

∞ −
=<∫=

t

dsscu

iii idecvt t ii 2,1,0))(()(
))((

ττφ
τ

 (14)

which is the utility of the i country’s consumer starting from initial time 0≥t .   
 
II. 2 Equivalence between Competitive Equilibrium and Social Planner’s Optimum 
Here in II. 2 we define competitive equilibrium in the open economy and first how it 
implies the social planner’s optimum.  In the competitive equilibrium, the consumer of 
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country i tries to maximize 
 ∫

∞ −
=∫=

0

))((
2,1,))(()( 0 idtetcvCU

t
ii dsscu

iiii  (15) 

subject to (3) and the budget constraint  

 2,1, =−+= icwrmm iiii  (16) 
where 0>im  is the non-human wealth (abbreviated wealth) held by consumer i which 
is an equity claim on capital.  Equities are traded internationally so that their interest 
rate is equal to rental price of capital, r by arbitrage conditions.  From the profit 
maximization of firm 

 )(')(' kfkfr ii == 2,1, =i  (17) 
and  

 )(')( iiiiii kfkkfw −= 2,1, =i  (18)
hold where iw  is the wage rate of country i.  (17) implies that the capital of each 

country moves in the same direction, i.e., 00 21 >⇔> kk .  Here  

 kkm
i ii i ==∑∑  (19)

holds by definition.  The utility maximization is solved by forming the Hamiltonian; 

 )(~)(~)( iiiiiiiiiiii cucwrmcvH αφλα −−++= 2,1, =i  (20)
and by obtaining the first order conditions; 

 0)('~~)(' =−− iiiiiiii cucv αφλα 2,1, =i  (21)

 rii λλ ~~
−= 2,1, =i  (22)

 iiii uv φφ ~~
+−= 2,1, =i  (23)

and the transversality conditions 

 0~
→iimλ  as ∞→t  (24)

and  

 0~
→iiαφ  as ∞→t 2,1, =i . (25)

Here we note 1
~λ  and 2

~λ  to be proportionate from (22) and hence 

0,~~
21 >= βλβλ where  being constant.  Let λλ =2

~ , βαα /~
11 = , 22

~ αα = , and 

ii φφ =
~

2,1, =i . Then (21) is rewritten as 0'~'~
11111 =−− uv αφλα  and 

0'~'~
22222 =−− uv αφλα .   Here by replacing 1α and 2α  of the social planner’s 

optimum by 1
~α  and 2

~α , we observe that the first order conditions (21), (22) and (23), 
the transversality conditions (24) and (25) of the competitive equilibrium satisfy those 
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of the social planner’s optimum (i.e., (5), (6) and (7), and the transversality conditions 
(8) and (9)).  Here the budget constraint of the competitive equilibrium (16) implies 
the law of motion of capital (2) in view of  

 ∑ ∑ ∑ ==+=+
i i i iiiiii kfkfwrkwrm )()()()( . 

   In short, we observe that the competitive equilibrium implies the social planner’s 

optimum. Conversely by letting 2,1,~
== iii φφ , 11

~αβα = , 22
~αα =  and hence 

21 / λβλλ == , we observe that the social planner`s optimum implies the competitive 
equilibrium.   

 
II. 3 Existence and Uniqueness of Stationary State of Competitive Equilibrium 
The stationary state of the competitive equilibrium is obtained by letting 

, ,k i i= = =0 0 0µ φ , ci = 0 and 0=m .  Hence we obtain at the stationary state E,  
 ,)( ∑ ==

i i cckf  

2,1,)(')( === ikfcu iii ρ  
2,1),(/)( == icucv iiiiiφ  

and 
2,1,/)( =−= irwcm iii  

(26) 
(27) 
(28) 

 
(29)

 
Fig. 1 

 
From (27), we observe c c ki i= ( )  with 2,1,0)(' =< ikci  and then from (26), the 

existence and the uniqueness of the stationary state E is immediate.  We denote 

2,1,,, ==== immcc iiiiii φφ  and k k=  to be their respective values at the stationary 

state E. (Bar - sign is attached to denote the value at the stationary state E.)   
 
II. 4 Local Representation of Competitive Equilibrium 
Next, to show that the stationary state is locally a saddle point, we linearlize the above 
differential equations (12), (6), (2) and (16) of competitive equilibrium around the 
stationary state E, and obtain  
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(30)   

where 0')""( 1 >−−= −
iiiii uruva φ , 0")"")(''( 1 >−−−= − fuvuvb iiiiiii φφ  and  

0'' >−= iiii uve φ 2,1, =i  ( ia , ib  and ie  are evaluated at E), )('' kffu ii === ρ  

r= 2,1, =i (See Appendix I.) and 111 kmF −=  is the home country’s net foreign asset 

holding. 
   Let A and B be respectively the coefficient matrix of (30) and its 5x5 upper and left 
submatrix.  Then we obtain for  
 ))(( IBrIA ωωω −−=−  and hence for 0=− IB ω  (31)
two negative 1ω  and 2ω  such that  

 02/)4( 2 <−−−= ii rr λω 2,1, =i  (32)

where 1λ  and 2λ  are two negative solutions of  

 0)()( 2111222121212211
2 =+++++++= baebaeeeaabbeaeah λλλ  

with 012 << λλ .(See Appendix I.)1/  Then 012 <<ωω  follows.  In short we can 
conclude that there exists locally a two dimensional manifold of the optimal path of ( 1c , 

2c , 1φ , 2φ , k) which converges monotonically to the stationary state as a saddle point. 
Here the local representation of the optimal path is given for 11eai −≠λ  2,1, =i , by 
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where 1A  and 2A  are determined by the initial values of k and net foreign asset 

holding F; 
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(36-2)

where k0 and m10 are respectively the initial values of )(tkk =  and )(11 tmm = , i.e., 
)0(0 kk =  and )0(110 mm = .   

First we note that 21 ccc +=  is locally an increasing function of k.  In fact for 

11eai −≠λ  2,1, =i , from tt erAerAcc 21 )()( 2211
ωω ωω −+−=− , (33-5) and  

012 <<ωω , we obtain 0)()/()( 1 >−→−− ωrkkcc  as ∞→t .  Here  
0)()()())(( 1122212211 ==++++++ iiiii heabeabeaea λλλλλ 2,1, =i is employed.  

Similarly for 111 ea−=λ , 21112 bbea −−−=λ , from terAcc 2)( 22
ωω−=−  and (34-5), 

we obtain 0)()/()( 2 >−=−− ωrkkcc .  Next we generalize this local property of c 

as an increasing function of k into global one.  
As for the local representation of ic 2,1, =i  as a function of k, for 11eai −≠λ  2,1, =i , 
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we note from (33-1), (33-2) and (33-5), )/()()/()( 1111111 earbkkcc +−−→−− λω  and 

)/()()/()( 2211222 earbkkcc +−−→−− λω  as ∞→t .  Since ))(( 2211 eaea ii ++ λλ  

0<  holds for 11eai −≠λ , (See Appendix I), )('1 kc  and )('2 kc  are seen to be of 
opposite sign.  Similarly for 111 ea−=λ  and 21222 bbea −−−=λ , recalling 

0)( 12 →− te ωω  as ∞→t , we note +∞→−− )/()( 11 kkcc  (resp. ∞− ) if 0/ 21 >AA  
(resp. <0) and −∞→−− )/()( 22 kkcc  (resp. ∞+ ) if 0/ 21 >AA  (resp. <0), and 
hence )('1 kc  and )('2 kc  are of opposite sign. 

    
III. Global Stability of Competitive Equilibrium 
III. 1 Global Properties of the Consumption Path C 
Next, we show the global stability.  Here we first show that ic  and iφ , 2,1=i  are 

continuously differentiable functions of k.  
Let ),,,,,( 2121 kcctX φφ=  be the solution path given by the system of ordinary 

differential equations (2), (5) and (11); 
 )()( 21 cckfk +−=  

2,1,)()( =+−= icucv iiiiii φφ  
2,1)),,('()"")(''( 1 =−−−−= − icfuvuvc iiiiiiiiii φρφφ . 

(2) 
(5) 

(12)

Then employing the fundamental theorem of ordinary differential equations (see, e.g., 

Hurewicz (1958, Theorems 8, 9 and 11, pp.29-32)) 2/ we express == dkdckc ii //  

),)(/()'()"")(''( 21
1 cckffuvuv iiiiiii −−−−−− − ρφφ  and == dkdk ii // φφ  )( iii uv φ+−  

 ))(/( 21 cckf −− , 2,1=i  as functions of k, ic  and iφ , 2,1=i  and by replacing the 
role of t with k, we obtain ),( 0Ykcc ii =  and ),( 0Ykii φφ = , 2,1=i  to be 
continuously differentiable in ),( 0Yk for k, 1c and 2c  such that 

0)()( 21 ≠+−= cckfk  where 0Y  is the initial value of ),,,( 2121 φφccY = . Here we 

note both ),( 0Ykci  and ),( 0Ykiφ , 2,1=i  to be uniquely expressed for each 

0)()( 21 >+−= cckfk  and 0)()( 21 >+−= cckfk  by construction.  Then it is 

possible for both ),( 0Ykci  and ),( 0Ykiφ  to have two values for a given k.  Bearing 
this in mind, however, we retain the same expression, ),( 0Ykci  and ),( 0Ykiφ , for 
simplicity.  It is immediate to show the functions ic  and iφ  are continuously 

differentiable in ),( 0Yk  for 0)()( 21 =+−= cckfk  as well except at kk =  and 
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hence the functions ic  and iφ  are continuously differentiable in ),( 0Yk  for all 

0>k  except kk = .3/   
Although ic  and iφ  are functions of k as well as t so that these are expressed as 

),(),(~
00 YkcYtcc iii ==  and ),(),(~

00 YkYt iii φφφ == , 2,1=i , hence forth we abuse 

notation to express as )(kcc ii =  and )()( kt iii φφφ == , 2,1=i , whenever there exists 

no danger of confusion. 
  Hence we obtain that the optimal path ))(),(),(),(( 2121 kkkckcY φφ=  converges at 
least locally to ),,,())(),(),(),(( 21212121 φφφφ cckkkckcY == . 

Next we show the global property of the optimal path Y.  To show this, we employ 
the following lemmas; 
 
Lemma 1 
c1, c2, 1φ , 2φ  and k are bounded. 

 
Proof 

iφ , 2,1=i  is seen to be bounded from (14);  

 ∫∫
∞ −−

>

−∞
≥−≤∫≤

t

tu

c
ii

dtu

t iii dtecvdtetcvt ic

i

t i
)()(inf

0

)(
0
1

)(sup)(()(
ττ

τ

φ   

  +∞<Φ≡−=
≥> 00

)(inf/)(sup
ii c

ii
c

ii cucv . 

Next we show ic , 2,1=i  to be bounded.   
Suppose C is not bounded.  Then either 1C  or 2C  is unbounded.  We assume 
without loss of generality, 1C  is unbounded, i.e., ∞→1c  as ∞→t .   Then  
k →∞   as  ∞→t   from (2), iφ  is bounded, and +∞→1µ  from (11) and 

lim ' ( ) lim ' ( )
c i i c i i

i i

v c u c
→∞ →∞

= 2,1,0 == i . From (10), 1µ cannot be infinite since 

0)()(' 11 <− cukf  for sufficiently large k and 1c . ( )(' kf  0→  as ∞→k  from the 
Inada conditions.)  This contradiction shows both 1C  and 2C  , and hence C to be 

bounded.   
   Now suppose k is not bounded.  Then from (2) there exist ε 0 0>  and t1 0>  such 
that 
 0sup2)( ε+> Ckf       for any        t t> 1 . 

Then we can consider the suboptimal path C'  such that C C'=  for t t≤ 1  and 
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)','(' 21 CCC = , ,
2
1sup' 01 ε+= CC  02 2

1sup' ε+= CC   for  t t> 1 .  This suboptimal 

path C' causes higher utility than C, contradicting the optimality of C.  Hence k must 
also be bounded.                                               
 
Lemma 2 (Poincaré-Bendixon Theorem) 4/   
For the two dimensional autonomous differential equation system, the path (trajectory) 
must become unbounded or converge to a limit cycle or to a point. 
Recalling that )),((),( 11 kkckc =  converges locally to ),( 1 kc  and hence from Lemma 

1 and 2, we observe that it does also globally.  We can employ the same arguments for 
2c , 1φ  and 2φ .  Hence we observe the following theorem; 

 
Theorem 1 
There exists a solution path )),(),,(),,(),,((),,,( 020102012121 YkYkYkcYkcccY φφφφ ==  

which converges to ),,,( 2121 φφccY =
−

 as kk →  for a given 0k , under an 

appropriate choice of 0Y . 
   Now we analyze the global properties of the optimal path of )(kcc =  employing 

the system of ordinary equations (38). 
     Fig. 2a     Fig. 2b 
Although the sign of ξ ' ( )k  at k k=  seems not to be definite, in case of 0)(' ≤kξ  

(Fig. 2a), the economy is globally stable in the sense it converges monotonically to a 
stationary point, but in case of  0)(' >kξ  (Fig. 2b), the economy converges to a limit 

cycle or to a point (as a spiral node) as shown by Lemmas 1 and 2.  However as shown 
above in (33) and (34), the stationary point is locally a stable saddle point.  
Furthermore from the above arguments, in particular we obtain for the world’s 
consumption c; 
 
Theorem 2 
For the open economy, the optimal path of world consumption c and world per capita 
capital k is globally stable so that  
 c c k= ( ) with kk →  as ∞→t  monotonically and c k' ( ) > 0. 
 
III. 2 Characteristics of Consumption Path 
Here we investigate the characteristics of the consumption path of both countries.  The 
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felicity function iv ,i=1,2 is identically equal to 1− , i.e.,  

 1)()( 2211 −== cvcv . 
The felicity function iu  reflects that the home country is more impatient than the 
foreign country, i.e.,  
 )()( 21 cucu >  for any c. 
We specify  
 0and,)log()( 111 >++= γαγαccu  
and  
 )log()( 222 α+= ccu  

following Devereux and Shi (1991).  Here iu  satisfies the regularity conditions 

mentioned before. ( 1−=v  also satisfies their conditions.)  This specification implies 
that there is no distributional effects (i.e., marginal propensity to save out of wealth is 
the same), yet time preference rates of consumption are different between two countries.   
For )()()(,0 2211 kfcucu ===> ργ  implies 21 cc < .  Furthermore, under this 
specification 2211 eaea = , 111 ea−=λ  and 21112 bbea −−−=λ  hold.  Hence we show 

21 cc <  holds always.   
Fig. 3a                        Fig. 3b 

a for the local properties of the slopes of ic , 2,1=i  curves, we have seen already that  
 −∞→)('1 kc (resp. ∞+ ) and +∞→)('2 kc (resp. ∞− ) as kk ←  
if and only if 0/ 21 <AA (resp. 0> ).  Fig. 3a (resp. Fig. 3b) corresponds to 

0/ 21 <AA (resp. 0> ).  First we are concerned with the case of growing world 
economy, i.e., kk < . 

First we show that for kk < , )('sgn 1 kc  (resp. )('sgn 2 kc ) changes only once 
while )('sgn 2 kc (resp. )('sgn 1 kc ) 0>  holds always for 0/ 21 <AA (resp. 0/ 21 >AA ).  

Since 0)(' >kc  holds globally, 0)( →kc  as 0→k  and cc ≤1  and must 
hold always, we observe both 1c  and 2c  must decrease to zero as 0→k  for both 

0/ 21 <AA  and 0/ 21 >AA  cases.  Recalling that (6) is reduced to  

 )(1 iiii cuφφ += , 2,1=i  

Fig. 4 
and ))(()( kcucu iiii = , 2,1=i , we observe  

 )('sgn)(''sgn/sgn 0 kc
u

kcudkd i
i

iii
i i

=






 ⋅
−==

φφ φ . 
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Hence 0/sgn 0 >=i
dkd i φφ  if and only if 0)(' >kci .  By definition of )(1 iiii cuφφ += , 

0<iφ (resp. 0> ) if and only if )(kii φφ =  curve is below (above) 0=iφ  curve as 

seen from Fig. 4.  Then )(kii φφ =  curve passes through 1a  and 2a  where 0=iφ  

as shown in Fig. 4. 
Hence we obtain  

 0)('0)(' >⇔> kck iiφ 2,1, =i  
Since 

 ))(')("/'( iiii kfuuc ρ−−= 2,1, =i  (39)
holds from (12) and ii φρ /1−=  from (13)  

 0)('0)(' >⇔> kk ii φρ 2,1, =i  (40)
where ),(kii ρρ =  2,1=i , we obtain  

 ii kfkc ρ>⇔> )('0)(' 2,1, =i  

from (39) and 0>k  for kk < . 
Fig. 5 

Now we are ready to show )('sgn 1 kc  changes only once.  Suppose for a 
contradiction, there exists 1a  and 2a  where 0)(' =kiφ  holds.  Let 1a  be the point 

where 0)(' >kci  for 1kk < , 0)(' 1 =kci , 0)(' <kci  for 21 kkk <<  as shown in 

Figs. 4 and 5.  Then from (39) and (40),  

 )()(' kkf iρ>  for 1kk < , 

 )()(' 11 kkf iρ= ,  

 )()(' kkf iρ<  for 21 kkk << , 

 )()(' 22 kkf iρ=  

and  

 )()(' kkf iρ>  for kkkk ≤<< 32 . 

However since 0)(' 2 =kiφ  holds, so does 0)(' 2 =kiρ  from (40), contradicting 

0)(' 2 <kiρ  as shown in Fig. 5. ( 0)(' 2 <kiρ  must hold for iρ  curve to intersect with 
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)(' kf  curve.)  This contradiction shows )()(' kkf iρ=  holds at most only one k.  
Figs. 3a and 3b show respectively the cases where )('sgn 1 kc  and )('sgn 2 kc  change 
only once. 
   From this argument, we also obtain that 2c  curve in Fig. 3a and 1c  curve in Fig. 
3b never changes its )('sgn 2 kc  and )('sgn 1 kc respectively for kk < .  In fact, in Fig. 
3a, for example, since 0)('2 >kc  both as 0→k  and kk →  holds, if )('sgn 2 kc  
ever changes, it changes at least twice, contradicting the change in )('sgn 2 kc  to be at 
most just once.  
   Next we show 1c  curve and 2c  curve never meet except at 0=k , and hence 

21 cc <  holds always for kk ≤<0 . 
   First we construct the straight line of ),( 21 cc  which satisfies )()( 2211 cucu = , or 

)log()log( 21 αγα +=++ cc  with 0and >γα , which is equivalent to 
)( 12 αβα +=+ cc  with 1>= γβ e , as is shown in Fig. 6. 

 Fig. 6  
I. 1c  curve and 2c  curve never intersect. 
  We here first show 1c  curve and 2c  curve never intersect.  We first investigate the 
case where 0/ 21 <AA  (Fig. 3a).  Suppose, for a contradiction, 1c  curve and 2c   
 
 
curve intersect at least twice at 1E  and 2E  as shown in Fig. 7a.  In Fig. 6, the curve 
starting from E passing through 2E  and 1E , corresponds to the movement of 1c  and 

2c  curves starting from kk =  in Fig. 7a.  As seen in Fig. 6, the curve 2EE 1E  is 
below the straight line )( 12 αβα +=+ cc , implying )()( 2211 cucu >  for 1tt >  where 

)( 11 tkk =  and 1
1
2

1
1 ),( Ecc =  with )( 11 kcc ii = 2,1, =i .  In short at 1E  and thereafter 

(i.e., )1tt >  )()( 2211 cucu >  holds always and hence )()( 1
2

1
1 tt φφ >  by construction.  

However as seen from Fig. 7a, at 1E  dkdcdkdc // 21 ≥  holds and hence from (39) and 

ii φρ /1−= 2,1, =i , 21 ρρ ≤  or )()( 1
2

1
1 tt φφ ≤  must hold, a contradiction.  Here we 

note that the above arguments hold especially when E1, happens to be the origin. 
   Hence for 0/ 21 <AA , 1c  curve and 2c  curve never intersect for kk ≤<0 . 

Fig. 7b 
   Fig. 7b corresponds to the case of 0/ 21 >AA , assuming 1c  curve and 2c  curve 
intersect at least twice at 1E  and 2E , for a contradiction.  Since dkdcdkdc // 21 ≥  
holds at 1E  where 1tt = ,  
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 )()( 1
2

1
1 1

1 2
1

1 1 tdedet
t

dsudsu
t

t
t φττφ

ττ

=∫−≤∫−= ∫∫
∞ −∞ −

 (41)

follows from (39) and ii φρ /1−=  again.  On the other hand, since 12 cc ≤  for 
21 ttt ≤≤  where 2tt =  holds at 2E , )()( 2211 cucu ≥  for 21 ttt ≤≤ , implying  

 ∫∫ ∫−>∫−
−− 2

1

1 2
2

1

1 1 t

t

dsut

t

dsu
dede tt ττ

ττ

. (42)

Now, since dkdcdkdc // 21 ≤  holds at 2E  where 2tt =  

 )()( 2
2

2
1 2

2 2
2

2 1 tdedet
t

dsudsu
t

t
t φττφ

ττ

=∫−≥∫−= ∫∫
∞ −∞ −

 (43)

must holds.  Here recalling ∫<∫ −−
2

1 2
2

1 1
t

t

t

t
dsudsu

ee  holds for 21 ttt ≤≤ , we obtain from 

(43) 

 ] ττ
ττ

dede
t

dsudsu

t

dsudsu
t

t t

t

t t

∫∫
∞ 










−−∞ 










−− ∫ ∫

−≥
∫ ∫

−
1

2

1 2 22

1

2

1 2 11

, 

or  

 ττ
ττ

dede
t

dsu

t

dsu
tt ∫∫

∞ −∞ − ∫−≥∫−
1

2 2

1

2 1 . (44)

By re-expressing (41) as  

 ττττ
ττττ

dededede
t

dsut

t

dsu

t

dsut

t

dsu
tttt ∫∫∫∫

∞ −−∞ −− ∫−∫−≤∫−∫−
2

2 2
2

1

1 2

2

2 1
2

1

1 1 . 

and from (44), we observe 

 ττ
ττ

dede
t

t

dsut

t

dsu
tt ∫∫ ∫−<∫−

−− 2

1

1 2
2

1

1 1 ,  

contradicting (42).  We here note that the above arguments hold especially when E1, 
happens to be the origin.  Hence this contradiction shows 1c  curve and 2c  curve 
never intersects for kk ≤<0 .  
 
II. 1c  curve and 2c  curve never touch. 

Fig. 8 
Next we show 1c  curve and 2c  curve never touch.  First we investigate the case 
where 0/ 21 <AA .  For this case we can employ the similar arguments as I, with 

21 tt = .  Suppose, for a contradiction 21 cc =  at 21 EE =  and 21 cc <  but 
)()( 2211 cucu >  for t with +∞<< t0  as can be seen in Fig. 6 with 21 EE = .  Then by 

construction  
 )()( 1211 tt φφ >  
must hold.  However at 21 EE =  as seen from Fig. 8 dkdcdkdc // 21 =  holds, and 
hence  
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)()( 1211 tt φφ =  
from (39) and ii φρ /1−= 2,1, =i , a contradiction.  This shows 1c  curve and 2c  
curve never touch as shown in Fig. 8.   

   Next we investigate the case where 0/ 21 >AA .  Recalling the slope of 0=iφ  is 

positive if and only if 0'>ic , and from Fig. 4, we obtain the two curves )(1 kφ  and  
Fig. 9 

)(2 kφ  for case 0/ 21 >AA  as drawn in Fig. 9 assuming two curves meet at 1E .  
( )(1 kφ  curve is positively sloped from 0'1 >c  for kk <<0  and )(2 kc  curve 
changes its sign from positive to negative just once as k increases up to k .  Then 
employing Fig. 4, we can obtain the slopes of two curves as drawn in Fig. 9.)  Hence 

)()( 1211 tt φφ = , i.e., (two curves 1φ  and 2φ  meet at 1E ) is obtained from 
dkdcdkdc // 21 =  at 1E  as drawn in Fig. 8, (39), and ii φρ /1−= 2,1, =i .  Here the 

slope of 2φ  curve is higher than that of 1φ  curve, i.e., 
 dkddkd //0 21 φφ <<  at E1 

comes from 21 uu > , 21 φφ =  and 01 >+= iii uφφ  at E1.  This implies at 'k  slightly 

smaller than k1 such that )'(' tkk =  
 )'()'( 21 tt φφ >  
must hold.  However then from Fig. 8(Fig. 8 holds for both 0/ 21 <AA and 

0/ 21 >AA .), at 'k  
 dkdcdkdc // 12 <  
must follow, implying )')(()')((0 1122 ραρα −+<−+< fcfc  from (39), and hence 

<− )'( 2ρf )'( 1ρ−f  from 21 cc <  at 'k as shown in Fig. 8.  This further implies 

21 ρρ <  and hence )'()'( 21 tt φφ <  from ii φρ /1−= , a contradiction.  This 
contradiction shows 1c  curve and 2c  curve never touch for 0/ 21 >AA . 
In short, we obtain 
  
Theorem 3 
Let 1)( −=ii cν , 2,1=i , γα ++= )log()( 111 ccu , and γα ++= )log()( 222 ccu  where 
α  and 0>γ .  Let kk < , i.e., the world economy be increasing. 
Then 
(1) the more patient home country’s consumption c1 is always less than that of the 
foreign country.   
(2) If the consumption of both countries increases as the world’s capital stock increases, 
then it continuous to increase after a while, but one country’s consumption starts 
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decreasing while the other country’s consumption keeps increasing.   
(3) If one country’s consumption decreases, while the other country’s consumption 
increases, then this consumption pattern remains unchanged. 
   Next we show the corresponding results for the decreasing world economy, i.e., 

kk < . 
 
Theorem 4 
Let the world economy be decreasing, i.e., kk < . 
Then 
(1) the more patient home country’s consumption c1 is always less than that of the 
foreign county, or if the home country’s consumption is larger than that of the foreign 
country, then the home country’s consumption becomes less than that of the foreign 
country after a certain time. 
(2) If the consumption of both countries decreases as the world capital stock decreases, 
then it countinues to decrease after a while but one country’s consumption starts 
increasing while the other country’s consumption keeps decreasing. 
(3) If one country’s consumption decreases, while the other country’s consumption 
increases, then this consumption pattern remains unchanged. 
Proof (See Appendix II) 
 

The only difference from increasing world economy’s case is the possibility of the 
change in the amounts of consumption between two countries although this change 
occurs only once.  As shown later this possibility gives rises to the possibility of the 
change in trade pattern and asset-debt position. 
   Theorems 3 and 4 show the significance of global analysis in comparison with the 
local analysis.  By restricting to the local analysis, we observe only the difference in 
the direction of two countries’ consumption path.  However by generalizing to the 
global analysis we observe that when the starting points is not close to the stationary 
state, this direction is the same initially, and eventually the change in the direction of 
only one country occurs toward the stationary state.  Such a non monotonicity of one 
country’s consumption while monotonicity of the other country’s consumption with 
respect to world capital increase is shown to be observed only by global analysis. 

  Next we investigate the trade patterns and asset-debt positions. 
 
III. 3 Trade Patterns and Asset-Debt Positions 
Henceforth we specify the production functions to be of Cobb-Douglas type, i.e.,  
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and  








=

<<≥=

ξ

ξ ξθθ

222

111

)(

10and1,)(

kkf

kkf
 (45)

That is, the home country is assumed to be technologically at least as good as the 
foreign country, 1≥θ .   
   Next we show when 21 cc <  holds 

 0)( 11111 >−−= kckfex ,  (46)
i.e., the home country’s export which is the home output )( 11 kf  less the home 

consumption 1c  and the home investment 1k is always positive if the home 

consumption 1c  is less than that of the foreign country.  Since =)(' 11 kf  rkf =)(' 22  
holds always, we obtain )1/(/ )1/(1

21 ηηθ ξ −== −kk  where += − 1/()1/(1 ξθη ))1/(1 ξθ −  
with 0)(' >θη  and 2/1=η  for 1=θ .  Then 21)1( kk ηη =−  and hence 

21)1( kk ηη =−  and kk η=1  from kk η=1  and kk )1(2 η−= .  Here we note 

ξξξξ ηθη kkkf 11 )1()( −− −== .  Then it follows that =−−= 11111 )( kckfex 111 )( ckf −  

kη− ))()(()( 212211111 cckfkfckf −−+−−= η 212211 )1()()()1( cckfkf ηηηη +−−−−=    

21)1( cc ηη +−−=  in view of )1/()/(/ )1/(1
2121 ηηθθ ξξ −=== −kkff .  Since 21 cc <  

and 1)1/( ≥−ηη  hold, 01 >ex  follows. 
   Lastly we show  

 ττθ dtextF
t

),()( 11 ∫
∞

−=  (47)

where )0(0)( 1111 <>−== kmtFF , i.e., the net foreign asset (debt) holding by the 

home consumer and ∫=
∞

−
t

dssr
et

)(
),( τθ , the time discount rate.  In fact, from the flow 

budget constraint (16) and 111 kmF −= , we obtain  

 11111111111111111 )()( kckfrFkcwkFrkcwrmkmF −−+=−−++=−−+=−=  

   11 exrF += ,  
in short  

 111 exrFF += . (48)

From the transversality condition 0~
→iimλ  as ∞→t 2,1, =i  (22) and 0→kλ  as 

λλλ ==∞→ 21
~~(t  and hence 0)( 21 →+mmλ  as 0→⇔∞→ kt λ  as  ⇔∞→t  
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ikλ  0→  as ∞→t 2,1, =i ) imply 0→iFλ  as ∞→t 2,1, =i .  Then from (22), we 

obtain  

 ),0()0(~)0(~)(~
0

)(
tet i

dtr

ii

t

θλλλ
τ
=∫=

−
2,1, =i . 

Substituting this into the transversality condition 0~
→ii Fλ  as ∞→t 2,1, =i , we 

obtain  

 NPG(No-Ponz-Game) Condition: 0),0(lim =
∞→

tFit
θ . (49)

Next by integrating the flow budget constraint (48), we obtain  

 ττθθ dtextttFtF
t

t
),(),()()( 111111

1
∫+= . 

By letting ∞→1t , and from NPG, we obtain (47).   
   Now we obtain  
Theorem 5 
(1) In the growing world economy, the more patient home country remains an exporter 
of good as well as debtor throughout transitional period. 
(2) In the decreasing world economy, if the more impatient home country’s 
consumption is less than that of the home country initially, then this difference remains 
thereafter and the home country remains an exporter of good as well as debtor 
throughout transitional period.  If the home country’s consumption is larger than that 
of the foreign country, then after a certain period, this difference is reserved, and the 
home country becomes an exporter of good as well as debtor and remains so thereafter. 
 
   We note that Theorem 5 holds even if there exists no technological superiority of the 
home country, i.e., even if 1=θ .  In this case such characteristics of trade patterns and 
asset-debt position arises purely from the differences in the time preference rate of 
consumption.  Furthermore with 1=θ , 0>ex  if and only if 21 cc <  holds, i.e., the 
home country is an exporter of good if and only if the home consumption is less than 
that of the foreign country.  Furthermore the conclusion (1) of this theorem seems to be 
consistent with the rapid economic growth of some Asian countries (including Japan 
and Korea) led by export as engines of growth.  In these countries saving propensities 
are higher reflecting lower consumption.   
  
IV. Concluding Remarks 
It is not difficult to introduce government expenditure into the model as far as it does 
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not affect consumption nor production.  Also to generalize into multi-country model 
would not be so difficult as far as felicity function iu  is of the same type as assumed in 
the last section.   
   Perhaps one of the most crucial assumption for the cases of trade patterns and 
asset-debt position is the Cobb-Douglas production function.  In fact owing to this, the 
home countries’ capital 1k  is always propotional to foreign countries’ capital 2k , i.e., 

2
1

1 )1( kk −−= ηη . 
  This does not hold even if we generalize production function into C.E.S. type.  One 
of the merits of introducing recursive type preference in the open model is that we can 
introduce capital accumulation into the model.  In fact if we restrict to different, not 
endogenously determined but fixed time preference rates iρ 2,1, =i , then we have to 
assume away capital accumulation to let the model work as done by Ikeda and Ono 

(1992), for with capital accumulation, )(' kfi =ρ 2,1, =i  must hold at the stationary 

state.  
   We have tried to send two main messages in this paper.  One is to show the 
characteristics of the optimal consumption path, trade patterns and asset-debt positions 
in the globally dynamic context.  Second is that the trade surplus and foreign debt of 
the more impatient country is the results of these countries’ optimal choice.  Hence if 
so, it does not make sense trying to let this country realize trade balance under the cause 
of “fair trade”. 
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Appendix I 
I. Derivation of (30) 

Let ic , iφ  and k  be linearlized around the stationary state E; then we obtain 

 )()( 11111 kkbac −−−−= φφ  
where 0')""()''(')"")(''( 1

1
111

1
11111

1
1111111 <−=−⋅−−=− −−− uruvuvuuvuva φφρφφ  from 

ri =ρ , 2,1=i , and 1
111111 )''('

1

−−= uvu φρρ φ , and 0")"")(''( 1
1111111 >−−= − fuvuvb φφ  

observing { } 0)'/()"")(''()'')(""( 2
111111111111111111 1

=−−−−−−= uvuvuvvuuvuvvuc φφφρ from 

=−−−−− )"")(''()'')(""( 11111111111111 uvuvvuuuvvu φφν { )""("" 1111111 uvuvvu φ−−−  
} =−−− − )'()')(''( 111

1
1111111 uvuvuvvu φφ (from (13) }{ )""("" 1111111 uvuvvu φρ −−−= )'( 111 uv φ−  

= (from 11 ρ=u  at E ) =−⋅−−= )')((" 1111111 uvvu φφρ (from (6), 11111 // ρφ vuv ==  at  
=E ) 0= . 
   Similarly  
 )()( 22222 kkbac −−−−= φφ  
where 0')""()''(')"")(''( 22

1
222

1
22222

1
2222222 <−=−⋅−−=− −−− uuvuvuuvuva ρφφρφφ , 

1
222222 )''('

2

−−= uvu φρρ φ , 0")"")(''( 1
2222222 >−−= − fuvuvb φφ  and 0

22 =cρ .  For iφ  

and k , we obtain 

 )()( iiiiiii ucce φφφ −+−−=  

and ))((')()( 2211 kkkfcccck −+−−−−=  where 0'' >−= iiii uve φ  and == iiu ρ  

rf =' .  Lastly for 1m   
 )()(")( 111111 mmrkkfFccm −+−+−−=  
where 111 kmF −= ).resp(0 1F−>  being the home country’s net foreign asset (resp. 
debt) holding of 01 >F  (resp. )01 >− F .  Here we note =∂+∂ krmw /)( 11  
 =⋅∂⋅+−∂=⋅∂+∂ dkdkkmffkfdkdkkrmw //)''(/)/)(( 11111111111  

""/""/" 1111111 fFfffFdkdkfF =⋅=  from ).(')(')(' 2211 kfkfkf ==   Then we obtain 
(30), 
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(30)   

Let A be the coefficient matrix of (30).  Then we observe 

 )()())(()( 2 ωωωωωω grIBrIAf −=−−=−=  

where  

 ++−++++−= 2121212211
22 )()()()( eeaarbbeaearg ωωωωω  

                      211122 baebae + . 
(A-1)

Let  

 )( ωωλ −= r  (A-2)
and  

 2111222121212211
2 )()( baebaeeeaabbeaeah +++++++= λλλ . (A-3)

Then by construction  

 )())(( ωωω grh =−  (A-4)
holds.  Next by expressing )(λh  as 
 21222111 ))(()( bbbeabeah −++++= λλλ  

and letting 0),max( 222111 <−−−−= beabeaB  and 0),min(ˆ
222111 <−−−−= beabeaB  

we obtain for the two negative solutions of 0)( =λh , λ  and 2λ  such that 
Fig. A.1 

 0ˆ
12 <<<< λλ BB  

holds. (See Fig. A. 1.) 
More specifically 

(1) 22110 eaea <<  

 )(0)( 1122 eaheah −<<−  holds. 
Then it follows that  

 0111222 <−<<−< eaea λλ  (A-5)
(2) 11220 eaea <<  
Then  

 )(0)( 2211 eaheah −<<−  holds.  Hence 

 0221112 <−<<−< eaea λλ  (A-6)
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(3) 2211 eaea = . 

Then  212221110 bbeaea −−−=>−=> λλ  (A-7)
follows.    
   Devereux and Shi (1991) specified 
 1−=iv  and )log()( αδ ++= iiii ccu , 2,1=i  
with 021 >> δδ  and 1>α .  Then rea ii /1= , 2,1=i  follows.  In short (3) 
corresponds to their case.  
   Now let iω , 2,1=i  be the two negative solutions of 0)( =ωg , i.e., 

 )( iii r ωωλ −= , 2,1=i . (A-8)
Then we observe 

 
2

42
i

i

rr λ
ω

−−
= , 2,1=i  

(A-9)

with 012 <<ωω .  Now we can conclude the stationary state E is locally a saddle 
point with two dimensional manifold of optimal path.   
   Now we show the local representation of ic , iφ , 2,1=i  and k near the stationary 
state.  
 
II. Local Representation of ic , iφ , 2,1=i , k and m1 
Let )',,,,,( 2121 iiiiii ϕξηηµµ  satisfy 
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 (A-10)

Then we obtain the following equations; 
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(A-11)

From (A-10), we obtain, for 2,1=i  
(i) 01111 =−−− iiii ba ξηµω  
(ii) 02222 =−−− iiii ba ξηµω , 
(iii) 0)( 111 =−+− iii re ηωµ , 
(iv) 0)( 222 =−+− iii re ηωµ , 
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 (v) 0)(21 =−+−− iiii r ξωµµ . 
and  

(vi) 0)()("11 =−+⋅+− iiii rkfF ϕωξµ , 2,1=i  

From (i) and (iii) by deleting 1iη , we obtain  
 0)/(11111 =−−−− iiiii reab ωµξµω   
or 
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For (1) and (2), 11eai −≠λ , 2,1=i  from (A-5) and (A-6), and hence we may assume 
0≠iξ , 2,1=i  from (vii).  Hence for (1) and (2), let 121 ==ξξ .  Then we obtain 

from (i) through (vii) 
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(A-12)

For (3), 111 ea−=λ  and 21222 bbea −−−=λ  from (A-7), implies 01 =ξ  from (vii).  
Hence let 111 =µ  and 12 =ξ  for (3).  Then we obtain 



 25

 
 
 
 
 
 
 
 
and  


























−

−−
+

+
−

=−

=−
+

+=−

+
+−=−

−
+

+−=−

−
+

+=−

.
)(")(

,

,

,)(

,)(

21

2

21

21

21

21

2

12
21

1

2
1

1
11

2

21

22
2

2

1
122

21

11
2

1

1
111

2
21

2
2122

2
21

1
2111

tt

t

tt

tt

tt

tt

e
r

kfFr
bb

b

Ae
r

Amm

eAkk

e
bb

beAe
a

A

e
bb

beAe
a

A

er
bb

bAeAcc

er
bb

bAeAcc

ωω

ω

ωω

ωω

ωω

ωω

ω

ω

ω

ωφφ

ωφφ

ω

ω

 (A-13)

 
III. Determination of A1 and A2 
Here from (A-12) and (A-13), by letting 0=t , we obtain 
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where m10 is the initial value of )(11 tmm = , i.e., )0(110 mm = . 
From these, A1 and A2 are determined as  
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Appendix II 
 
Proof of Theorem 4 
I  Case 0/ 21 <AA  

Fig. A.2.a 
 
Fig. A.2.a shows the diagram of )(' kf , 1ρ  and 2ρ  for 0/ 21 <AA .  Recalling 

21)(' ρρ ==kf  holds at the stationary state and 21 )(' ρρ >> kf  holds for kk <  
near k , we obtain 21 )(' ρρ << kf  holds for kk >  near k  from 22 cc <  and 

11 cc >  with 0)('2 <kc  and 0)('2 >kc  for k near k  ( kk > ).  In Fig. A.2.a, 1ρ  
curve intersects with )(' kf  with 0)'('1 =kρ  at the intersection ( 'kk = ).  If this ever 
occurs, then the change in )('1 kc  occurs at this intersection.  Furthermore since 1c  
curve is negatively sloped at the 'kk >  as shown later, 1ρ  curve is positively sloped 
after 'kk > , implying these two intersects only once at 'kk = . 
  For 2ρ  curve to intersect with )(' kf  curve, 0)('2 =kρ  must hold at the 
intersection from 0)('0)(' >⇔> kk ii φρ  (from )(/1 kii φρ −= ) 0)(' >⇔ kci (as shown 

below in Fig. A.3) 0<⇔ ic  (from 0<k ) ⇔  )(' kfi <ρ  (shown later), which is 

impossible since )(' kf  is negatively sloped.  In short 2ρ  curve never intersects 
with )(' kf  curve except at kk = .  This shows 2c  curve is positively sloped for 

kk > .   
Fig. A.3 

Fig. A.3 shows a 0)('0)(' >⇔> kck iiφ , 2,1=i  to hold.  Recalling  

 )('sgnsgn
0

kc
dk
d

i
i

i

=
=φ

φ , 

and 0>iφ (resp. < 0) above(resp. below) 0=iφ  curve, we can obtain )(kiφ  curve.  

By construction  
0)('0)(' >⇔> kck iiφ , 2,1=i . 

From the above arguments we can obtain ic , 2,1=i  curve as drawn below; 
Fig. A.4.a 

Although c1 and c2 curve are shown to intersect at E1, this occurs only when 1ρ  curve 
intersects with )(' kf  curve.  If not, then 1ρ  is always less than )(' kf  for kk >  
and hence c1 curve is negatively sloped for kk > .  Since c2 curve is positively sloped 
always for kk > , these two curves never meet when c1 curve is negatively sloped for 
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kk > .  We can show these two curves meet just once at E1, for kk >  by way of 
contradiction supposing two curves meet at E2 north east of E1, as shown in Fig. A.5.  

Fig. A.5 
We can employ the arguments for Fig. 7b once again from (41) to (44) with 
interchanging the role of E1, with E2, and obtain contradiction.  
   Next we show that c1 curve and c2 curve never touch. 

Fig. A. 6                         Fig. A.7.a 
Suppose not.  Then c1 curve and c2 curve touch at E1 as shown in Fig. A. 6.  At E1, 

21 φφ =  holds from dkdcdkdc // 21 = , (39) and )(/1 kii φρ −= , 2,1=i .  21 cc =  
implies )()( 2211 cucu >  and hence  
 dkddkd //0 12 φφ <<  at E1, 

from (6), 1−=iv , 2,1=i  and 0<k . ( 0)('0)(' >⇔> kkc ii φ , 2,1=i  and hence 

01)( <+= iii uk φφ ).  Let 'k  be slightly smaller than k1 such that )'(' tkk = .  Then as 

seen from Fig. A.7.a, 2121 )'()'( ρρφφ <⇔< tt  holds.  From A. 6, we obtain 
 dkdcdkdc //0 12 <<  at 'kk = , implying  
 )')(()')((0 1122 ραρα −+>−+> fcfc   

from (39) and 0<k .  Hence from 21 cc <  it follows that 

 1212 ''0 ρρρρ <⇔−>−> ff , 
a contradiction.  This shows c1 curve and c2 curve never touch.  Hence we obtain the 
results of Theorem 4 for case 0/ 21 <AA . 
 
II. Case 0/ 21 >AA  
Next we consider case 0/ 21 <AA . 

Fig. A.2.b 
For this case the role of 1ρ  and 2ρ  are interchanged as shown in Fig. A.2.b. 

Fig. A.4.b 
The slope of c1 curve is positively sloped for kk > , while slope of c2 curve may 
change once at k’.  The two curves intersect just once at E1 if these ever do, but not 
more than once.  We can show this by way of contradiction as drawn in Fig. A.5. 
We can employ the arguments for Fig.7a.(At E2 212121 φφρρ ≤⇔≤⇔≥ cc .  
However )()( 2211 cucu >  for 2kkk <<  where 21 cc =  and 2kk =  at the 
intersection E2 implies 21 φφ > , a contradiction.) 
   Next we show c1 curve and c2 curve never touch.  Suppose not.  Then we obtain 
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from Fig. A.6(Fig. A.6 holds for both 0/ 21 <AA and 0/ 21 >AA ), 21 φφ =  at E1 where 
)(' 11 tkkk == .  However as seen from Fig. A.4.b with E1 being touching point of the 

two curves, )()( 1211 tt φφ >  must hold since )()( 2211 cucu >  for 1kkk ≤< , a 
contradiction. 
Hence c1 curve and c2 curve never touch.  Hence we obtain the results of Theorem 4 
for 0/ 21 >AA . 
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Notes 
 

1. Devereux and Shi (1991) employed the technique developed by Epstein (1987a), 

showing that for the upper-left 2x2 matrix of 







−−−

−−
=−

2222

1111)(
beab

bbea
AIrA

M= , 0)( =−= IMh λλ  has two negative solutions 1λ  and 2λ , and (A-4) 
holds when 1−=iv , and )log()( αδ ++= iiii ccu , 2,1=i , with 21 δδ >  and 

1>α  are assumed. 
2. 
 

Let nRtXF ∈),(  be continuously differentiable in nRX ∈  and Rt∈  and 

satisfy a Lipschitz condition.  Then the system of ordinary differential equations 
),(/ tXFXdtdX ==  has a unique solution ),( 0 tXXX =  continuously 

differentiable in 0X  and t where 0X  is the initial value of X. 

3. By employing the above theorems again, we observe that the solution path 1c , 2c , 

1φ , 2φ  and k such that ),(~
0Ytcc ii = , ),(~

0Ytii φφ = , 2,1=i  and ),(~
0Ytkk =

are continuously differentiable in ),( 0Yt  and especially for 

0)()( 21 =+−= cckfk .  In fact let jt , jk  and ijc , 2,1=i  and 2,1=j , … be 

the values of t, k and ic , 2,1=i  respectively such that 0)()( 21 =+−= cckfk . (It 

is immediate to show  −= )(kfk  0)( 21 =+ cc  at most for countabilly many 
distinct points of  ),,( 21 cck )  Then ic~ , iφ

~  and k~  are continuously 
differentiable at jt , 2,1=j ... with +∞<it .  This implies ),( 0Ykci  and 

),( 0Ykiφ , are continuously differentiable at )( kk j ≠ , 2,1=j …  Since ),( 0Ykci

and ),( 0Ykiφ , 2,1=i  are continuous in k at kk =  also from (33-1) through 

(34-6), we observe these are continuously differentiable in 0>k  except kk =
and continuous at kk = . 

4. For this, see. e.g. Hsu and Meyer (1968), Section 5.8. 
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