Exchange Rate Volatility and Exports from East Asian Countries to Japan and the U.S.

SaangJoon Baak* Arif Al-Mahmood Souksavanh Vixathep

Assistant Professor Assistant Professor Graduate School of
International Univ. of Japan Asian University of Bangladesh International Relations
Yamato-machi Minami Uonuma-gun International Univ. of Japan
Niigata, 949-7277 Japan

Email: sbaak@iuj.ac.jp
Phone: 81-257-79-1510
Fax: 81-257-79-1187

June 25, 2002

ABSTRACT

The purpose of this paper is to investigate the impact of exchange rate volatility on exports in four East Asian countries (Hong Kong, South Korea, Singapore, and Thailand). Specifically, this paper aims to determine whether the bilateral real exchange rate volatility between an East Asian country and its trading partner negatively affects the exports of the East Asian country. Considering the dominant roles of the U.S. and Japan as trading partners of those East Asian countries, this paper focuses on the monthly export volumes of East Asian countries to the U.S. and Japan for the period from 1990 to 2001. Except for the case of Hong Kong’s exports to Japan, cointegration tests and estimations of error correction models indicate exchange rate volatility has negative impacts on exports either in the short run or in the long-run, or both. On the other hand, manufacturing production indices of importing countries and depreciation of real bilateral exchange rates turn out, in general, to have positive effects on the exports of the East Asian countries examined.

JEL Classification: C2, F1, F3

Keywords: Exchange rate volatility, Export, East Asia, Cointegration, Error correction model

*The corresponding author
1. Introduction

The purpose of this paper is to investigate the impact of exchange rate volatility on exports in four East Asian countries (Hong Kong, South Korea, Singapore, and Thailand) where exports have been the major engine of economic growth.

Even though these East Asian countries has implemented export-oriented economic policies since their early stages of development, the impact of exchange rate volatility on exports, which has attracted the interests of researchers and policy makers since early 1970s, has rarely been studied for those countries. One major reason of this neglect may be rooted in the facts that the exchange rates of East Asian currencies against the U.S. dollar had been relatively stable since they had been implicitly pegged to the U.S. dollar until the 1997 financial crisis and that the U.S. has been the main export market of most East Asian countries.

As East Asian countries has moved to a floating exchange rate system since the 1997 financial crisis and as the share of non-US markets in the exports of East Asian countries has been increasing\(^1\), however, the issue of the impact of exchange rate volatility on exports has gained some attentions of researchers and policy makers in East Asia.

Even though East Asian countries manage to stabilize their currency values against the U.S. dollar, it does not mean their currency values are also stable against the currencies of other major trading partners of theirs than the U.S., such as the Japanese yen. In fact, since the Japanese yen floated more freely against the U.S. dollar while other East Asian currencies were effectively pegged to the U.S. dollar, the exchange rates of East Asian currencies against the Japanese yen were relatively unstable. Therefore, the impact of exchange rate volatility on exports is an issue to a country whose exchange rate against the U.S. dollar is managed quite stable but where the U.S. is not the only dominant trading partner.

As Kawai and Takagi (2001) point out, this issue is especially important to the post-crisis East Asia which is seeking a new regional interest rate regime because the

\(^1\) See Tables 1-1 through 1-4. Except for the case of Thailand, the share of the U.S. in the exports of the East Asian countries examined in this paper has declined for the last 15 years. According to
impact of exchange rate volatility on exports should be examined to construct an optimal exchange rate scheme. Also, it should be considered by the local monetary authorities when they set the weights of different foreign currencies in the determination of the values of their own currencies.

Against this background, the present paper aims to determine whether the bilateral exchange rate volatility between an East Asian country and its trading partner negatively affects the exports of the East Asian country. Considering the dominant roles of the U.S. and Japan as trading partners of East Asian countries, this paper focuses the exports from East Asian countries to the U.S. and to Japan for the period from 1990 to 2001.

In fact, numerous studies, theoretically and empirically, have attempted to find the nature of the relationship between exchange rate volatility and exports, and reported both positive and negative relationships. In addition, some have reported no significant relationship. However, as mentioned earlier, this issue was rarely investigated regarding the exports of East Asian countries.

It should be, however, noted that this paper distinguishes from the previous literature not only by the geographical focus of the study but also by the empirical research tools. Most of empirical research examining time series data in this area investigated quarterly data of the total export volumes of one or more countries. In contrast, the present paper investigates monthly data of bilateral export volumes, which is expected to yield more accurate results as Baum, Caglayan and Ozkan (2001) and Dell’ Ariccia (1999) argue.

Following Arize, Osang and Slottje (2000), Chowdhury (1993) and Hassan and Tufte (1998) among others, the long-run relationship between exchange rate volatility and exports is examined by performing cointegration tests, and the short run impacts of exchange rate volatility on exports is examined by estimating error-

Nakamura and Matsuzaki (1997) and Takagi (1996), Japan’s share in the exports of the whole East Asian countries became close to the U.S. in mid 1990s.

correction models. Along with exchange rate volatility, manufacturing production indices and real bilateral exchange rates are also employed as explanatory variables of real export volumes.

Exchange rate volatility is measured by computing the monthly standard deviations of daily real bilateral exchange rates. Since daily exchange rates are nominal and price indices are not available on a daily basis, monthly price indices were converted into daily price indices using the method of “Quadratic-Match Average” available in the software package, E-Views 4, to compute daily real bilateral exchange rates.

In the case of exports to the U.S., preliminary empirical test results indicate a negative long-run relationship between exports and exchange rate volatility in South Korea and Singapore, and no long-run relationship in Hong Kong and Thailand. However, negative short-run impacts of exchange rate volatility on exports are detected in Hong Kong and South Korea.

In the case of the exports to Japan, empirical studies indicate a negative long-run relationship between exports and exchange rate volatility in South Korea and Thailand, and a positive long-run relationship in Hong Kong and Singapore. In contrast, negative short-run impacts of exchange rate volatility on exports are detected in all the countries examined, except for Hong Kong.

On the other hand, manufacturing production indices of importing countries and depreciation of real bilateral exchange rates turn out, in general, to have positive effects on export volumes of the East Asian countries examined.

2. Description of the model and data

2.1. The cointegration equation

This paper investigates the long-run relationship between exchange rate volatility and exports by performing cointegration tests and the short run impacts of volatility on exports by estimating error-correction models as in Arize, Osang and Slottje (1999, 2000), Chowdhury (1993) and Hassan and Tufte (1998).
Following the typical specification of other papers, the long-run equilibrium relation between exports and other economic variables is examined in this paper by the following equation:

\[X_t = \xi_0 + \xi_1 i_t + \xi_2 p_t + \xi_3 \sigma_t + \varepsilon_t \]

where \(X_t \) denotes real exports from an East Asian country to either the U.S. or Japan, \(p_t \) the real bilateral exchange rate reflecting the price competitiveness, \(i_t \) the manufacturing production index of the importing country, \(\sigma_t \) the exchange rate volatility, and \(\varepsilon_t \) a disturbance term. All variables are in natural logarithm.

In this equation, \(i_t \) is used as a proxy for economic activity in the importing country because monthly data for GDP are not available. It is expected that the higher the economic activity in the importing country, the higher the demand for exports. Therefore, the value for \(\xi_1 \) is expected to be positive. Since a higher real exchange rate implies a lower relative price, the value for \(\xi_2 \) is also expected to be positive.

Exchange rate volatility is measured by computing the monthly standard deviations of daily real bilateral exchange rates. Since daily exchange rates are nominal and price indices are not available on a daily basis, monthly price indices were converted into daily price indices using the method of “Quadratic-Match Average” available in the software package, E-Views 4, to compute daily real bilateral exchange rates. The following subsection shows more specifically how the data for the variables were computed.

2.2. The variables

Real exports (X*)
In order to ensure consistency in data\(^4\), exports of the East Asian economies under consideration are converted from US dollar into the respective local currency unit (LCU) using corresponding nominal exchange rates, since the export unit value index is based on domestic currency\(^5\). Real exports of country \(i\) are defined as follow:

\[
X_{it} = \ln \left(\frac{EX_{it}}{EXUV_{it}} \times 100 \right) \quad i=1, 2, 3, 4
\]

where \(X_{it}\) denotes real exports of country \(i\) in domestic currency in natural logarithm scale, \(EX_{it}\) is monthly nominal exports of country \(i\) in domestic currency, \(EXUV_{it}\) denotes the index of export unit value of country \(i\) and the index \(t\) symbolizes the time.

Industrial production index \((i_t)\)

As mentioned in the previous section, lack of monthly data for income or GDP of the importing countries leads to the application of the industrial production index as a proxy variable for the economic condition of the importing country. Industrial production indices are commonly used as a proxy for income in literature, for example Baum, Calagyan and Ozkan (2002). The variable \(i_t\) is the natural logarithm of the industrial production index of an importing country in time \(t\).

Real bilateral exchange rate \((p_{it})\)

Bilateral trade between two countries depends upon, among other things, exchange rates and the relative price level of the two partners. Hence, the following definition of real exchange rates for country \(i\) captures both effects related to the price of currencies, and of goods and services.

\(^4\) Variables, which were not seasonally pre-adjusted, were adjusted for seasonality prior to taking logarithm by applying the method Census X12 available in the software package Eviews 4.

\(^5\) See IFS documents, such as IFS yearbook 2001, for detailed explanation about the unit value index for exports.
\[p_{it} = \ln \left(E_{it} \times \frac{CPI_{it}}{CPI^{*}_{it}} \right) \quad i=1, 2, 3, 4 \]

where \(p_{it} \) symbolizes real monthly exchange rate in natural logarithm scale; \(E_{it} \) is the nominal monthly exchange rate; \(CPI_{it} \) and \(CPI^{*}_{it} \) denote the monthly consumer price index of an exporting country \(i \) and an importing country \(j \), respectively; and \(t \) symbolizes the time index.

Real exchange rate volatility (\(\sigma_i \))

Although there exist numerous measures for exchange rate risks, the present study applies standard deviation of exchange rates, since this measure is common in literature, for instance Akhtar and Hilton (1984) and Baum et al. (2002). The monthly real exchange rate volatility \(\sigma_i \) is defined as the natural logarithm of the standard deviation of daily real exchange rates \((RER_{ij}) \) within one month.

\[\sigma_{it} = \ln \left(\sqrt{\frac{1}{n-1} \sum_{k=1}^{n} (RER_{ik} - \bar{RER}_i)^2} \right) \quad i=1, 2, 3, 4 \]

where \(RER_{ik} \) is the daily real exchange rate of country \(i \) in normal scale; \(\bar{RER}_i \) denotes the monthly average of daily real exchange rates in normal scale and \(k \) is the index of the days in a month, on which exchange rate data are available. \(RER_{ik} \) is defined as the product of country \(i \)'s daily nominal exchange rate and the ratio of the daily CPI of the importing country over the daily CPI of the exporting country.

As illustrated above, the computation of daily real exchange rates requires daily data for the consumer price index. Hence, monthly CPI was used to compute daily CPI for the six economies involved because of lack of daily CPI data. Derived from the methodology applied in Baum et al. (2002), the frequency conversion from low frequency (monthly) to high frequency (daily) was conducted by applying the method “Quadratic-match Average” available in the software package Eviews4.

Data Sources
The monthly data starts from January 1990 and ends at November 2001. Consumer Price Indices (CPI) have been collected from the *International Financial Statistics (IFS)* of the International Monetary Fund (IMF).

The data for exports from each East Asian country to Japan and to the U.S. have been obtained from the *Direction of Trade Statistics (DOTS)* of the IMF. The data for the industrial production index of Japan have been collected from the Ministry of Economy, Trade and Industry (METI) of Japan, while the data for the industrial production index of the U.S. have been collected from the Federal Reserve Board (FRB) of the U.S. Daily exchange rate data have also been collected from the FRB of the U.S.

2.3. The error-correction model

After observing the results of cointegration tests, the following dynamic error correction (EC) model is constructed and estimated to see the short-run impacts of exchange rate volatility on exports:

\[
\Delta X_t = k_0 + \lambda EC_{t-1} + \sum_{i=0}^{n} \alpha_i \Delta X_{t-i-1} + \sum_{i=0}^{n} \alpha_2 \Delta p_{t-i-1} + \sum_{i=0}^{n} \alpha_3 \Delta i_{t-i-1} + \sum_{i=0}^{n} \alpha_4 \Delta \sigma_{t-i-1} + u_t \quad (2)
\]

If the variables in equation (1) are not cointegrated, the error correction term, EC_{t-1}, will be eliminated from equation (2).

3. Empirical test results

3.1. Unit Root tests

As preparation for cointegration tests, the presence of unit roots in the variables included in equation (1) are examined using the augmented Dickey-Fuller (ADF)
tests. Tables <2-1> and <2-2> present the augmented Dickey-Fuller test statistics for the first differences all the four variables in equation (1). The length of the lags included in the tests were determined by the Akaike information criterion. The ADF statistics for the levels of all the series were below the critical values implying the presence of unit roots. However, the statistics obtained from the first differences of the variables reject the null hypothesis of a unit root at the five percent significance level.

3.2. Cointegration tests and Error correction model

Johansen (1988,1991) cointegration tests were applied to test for the presence of a long-run equilibrium relationship in the variables in equation (1). The results of cointegration tests are presented in Tables <3-1> and <3-2>, where r denotes the number of cointegrating vectors. The test statistics imply the presence of one cointegrating relationship for all the four countries examined.

The estimated coefficients for the long-run relationship are presented in Tables <4-1> and <4-2> and the estimated coefficients for the error corrected models are presented in Tables <5-1> and <5-2>. In all countries, the level of economic activity measured by the manufacturing production index turns out to positively affect exports to Japan and exports to the U.S. both in the long run and in the short run.

In contrast, the impact of exchange rate volatility turns out to be a little bit ambiguous as in other literature. In the case of exports to the U.S., preliminary empirical test results indicate a negative long-run relationship between exports and exchange rate volatility in South Korea and Singapore, and no long-run relationship in Hong Kong and Thailand. However, negative short-run impacts of exchange rate volatility on exports are detected in Hong Kong and South Korea.

In the case of the exports to Japan, empirical studies indicate a negative long-run relationship between exports and exchange rate volatility in South Korea and Thailand, and a positive long-run relationship in Hong Kong and Singapore. In contrast, negative short-run impacts of exchange rate volatility on exports are detected in all the countries examined, except for Hong Kong.
References

Baum, Christopher F., Mustafa Caglayan and Neslihan Ozkan (2001), Exchange rate effects on the volume of trade flows: an empirical analysis employing high-frequency data, manuscript, Boston College.

Table 1-1: Exports of Hong Kong 1986-1999

<table>
<thead>
<tr>
<th>Year</th>
<th>DOT World Total (in million USD)</th>
<th>Share of Exports to the U.S. (in percent)</th>
<th>Share of Exports to Japan (in percent)</th>
<th>Share of Exports to China (in percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1986</td>
<td>35,438</td>
<td>31.34</td>
<td>4.66</td>
<td>21.31</td>
</tr>
<tr>
<td>1987</td>
<td>48,473</td>
<td>27.87</td>
<td>5.10</td>
<td>23.29</td>
</tr>
<tr>
<td>1988</td>
<td>63,182</td>
<td>24.83</td>
<td>5.85</td>
<td>26.95</td>
</tr>
<tr>
<td>1989</td>
<td>73,113</td>
<td>25.31</td>
<td>6.19</td>
<td>25.74</td>
</tr>
<tr>
<td>1990</td>
<td>82,143</td>
<td>24.13</td>
<td>5.70</td>
<td>24.75</td>
</tr>
<tr>
<td>1991</td>
<td>98,578</td>
<td>22.71</td>
<td>5.38</td>
<td>27.12</td>
</tr>
<tr>
<td>1992</td>
<td>119,512</td>
<td>23.08</td>
<td>5.24</td>
<td>29.63</td>
</tr>
<tr>
<td>1993</td>
<td>134,996</td>
<td>23.08</td>
<td>5.15</td>
<td>32.36</td>
</tr>
<tr>
<td>1994</td>
<td>151,379</td>
<td>23.24</td>
<td>5.57</td>
<td>32.81</td>
</tr>
<tr>
<td>1995</td>
<td>173,556</td>
<td>21.81</td>
<td>6.11</td>
<td>33.34</td>
</tr>
<tr>
<td>1996</td>
<td>180,530</td>
<td>21.25</td>
<td>5.55</td>
<td>34.33</td>
</tr>
<tr>
<td>1997</td>
<td>187,870</td>
<td>21.80</td>
<td>6.08</td>
<td>34.91</td>
</tr>
<tr>
<td>1998</td>
<td>173,693</td>
<td>23.43</td>
<td>5.25</td>
<td>34.45</td>
</tr>
<tr>
<td>1999</td>
<td>173,793</td>
<td>23.88</td>
<td>5.42</td>
<td>33.37</td>
</tr>
</tbody>
</table>

Source: IMF, Direction of Trade Statistics, Yearbook (various issues)

Table 1-2: Exports of Korea 1986-1999

<table>
<thead>
<tr>
<th>Year</th>
<th>DOT World Total (in million USD)</th>
<th>Share of Exports to the U.S. (in percent)</th>
<th>Share of Exports to Japan (in percent)</th>
<th>Share of Exports to China (in percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1986</td>
<td>34,792</td>
<td>40.01</td>
<td>15.60</td>
<td>N.A.</td>
</tr>
<tr>
<td>1987</td>
<td>47,303</td>
<td>38.86</td>
<td>17.84</td>
<td>N.A.</td>
</tr>
<tr>
<td>1988</td>
<td>60,683</td>
<td>35.39</td>
<td>19.78</td>
<td>N.A.</td>
</tr>
<tr>
<td>1989</td>
<td>62,496</td>
<td>32.33</td>
<td>21.07</td>
<td>N.A.</td>
</tr>
<tr>
<td>1990</td>
<td>65,027</td>
<td>29.90</td>
<td>19.44</td>
<td>N.A.</td>
</tr>
<tr>
<td>1991</td>
<td>71,875</td>
<td>25.89</td>
<td>17.19</td>
<td>1.40</td>
</tr>
<tr>
<td>1992</td>
<td>76,641</td>
<td>23.60</td>
<td>15.13</td>
<td>3.46</td>
</tr>
<tr>
<td>1993</td>
<td>85,808</td>
<td>21.23</td>
<td>13.48</td>
<td>6.00</td>
</tr>
<tr>
<td>1994</td>
<td>96,389</td>
<td>21.32</td>
<td>14.03</td>
<td>6.44</td>
</tr>
<tr>
<td>1995</td>
<td>125,588</td>
<td>19.25</td>
<td>13.61</td>
<td>7.32</td>
</tr>
<tr>
<td>1996</td>
<td>130,994</td>
<td>16.62</td>
<td>12.22</td>
<td>8.77</td>
</tr>
<tr>
<td>1997</td>
<td>136,354</td>
<td>15.82</td>
<td>10.84</td>
<td>9.97</td>
</tr>
<tr>
<td>1998</td>
<td>132,703</td>
<td>17.39</td>
<td>9.24</td>
<td>9.03</td>
</tr>
<tr>
<td>1999</td>
<td>143,647</td>
<td>20.61</td>
<td>11.04</td>
<td>9.53</td>
</tr>
</tbody>
</table>

Source: IMF, Direction of Trade Statistics, Yearbook (various issues)

Note: N.A. denotes not available
Table 1-3: Exports of Singapore 1986-1999

<table>
<thead>
<tr>
<th>Year</th>
<th>DOT Total (in million USD)</th>
<th>World Share of Exports to the U.S. (in percent)</th>
<th>Share of Exports to Japan (in percent)</th>
<th>Share of Exports to China (in percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1986</td>
<td>22,501</td>
<td>23.36</td>
<td>8.58</td>
<td>2.54</td>
</tr>
<tr>
<td>1987</td>
<td>28,696</td>
<td>24.39</td>
<td>9.05</td>
<td>2.57</td>
</tr>
<tr>
<td>1988</td>
<td>39,318</td>
<td>23.83</td>
<td>8.63</td>
<td>3.03</td>
</tr>
<tr>
<td>1989</td>
<td>44,769</td>
<td>23.30</td>
<td>8.55</td>
<td>2.68</td>
</tr>
<tr>
<td>1990</td>
<td>52,753</td>
<td>21.26</td>
<td>8.75</td>
<td>1.51</td>
</tr>
<tr>
<td>1991</td>
<td>59,219</td>
<td>19.71</td>
<td>8.67</td>
<td>1.45</td>
</tr>
<tr>
<td>1992</td>
<td>63,437</td>
<td>21.12</td>
<td>7.61</td>
<td>1.75</td>
</tr>
<tr>
<td>1993</td>
<td>74,041</td>
<td>20.36</td>
<td>7.46</td>
<td>2.57</td>
</tr>
<tr>
<td>1994</td>
<td>96,911</td>
<td>18.67</td>
<td>6.98</td>
<td>2.16</td>
</tr>
<tr>
<td>1995</td>
<td>118,187</td>
<td>18.26</td>
<td>7.80</td>
<td>2.33</td>
</tr>
<tr>
<td>1996</td>
<td>125,125</td>
<td>18.43</td>
<td>8.19</td>
<td>2.71</td>
</tr>
<tr>
<td>1997</td>
<td>125,326</td>
<td>18.44</td>
<td>7.06</td>
<td>3.23</td>
</tr>
<tr>
<td>1998</td>
<td>109,886</td>
<td>19.89</td>
<td>6.58</td>
<td>3.70</td>
</tr>
<tr>
<td>1999</td>
<td>114,730</td>
<td>19.22</td>
<td>7.42</td>
<td>3.42</td>
</tr>
</tbody>
</table>

Source: IMF, Direction of Trade Statistics, Yearbook (various issues)

Table 1-4: Exports of Thailand 1986-1999

<table>
<thead>
<tr>
<th>Year</th>
<th>DOT Total (in million USD)</th>
<th>World Share of Exports to the U.S. (in percent)</th>
<th>Share of Exports to Japan (in percent)</th>
<th>Share of Exports to China (in percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1986</td>
<td>8,864</td>
<td>18.12</td>
<td>14.22</td>
<td>3.11</td>
</tr>
<tr>
<td>1987</td>
<td>11,563</td>
<td>18.71</td>
<td>14.98</td>
<td>3.36</td>
</tr>
<tr>
<td>1988</td>
<td>15,910</td>
<td>20.11</td>
<td>16.00</td>
<td>2.99</td>
</tr>
<tr>
<td>1989</td>
<td>20,175</td>
<td>21.60</td>
<td>16.96</td>
<td>2.68</td>
</tr>
<tr>
<td>1990</td>
<td>23,072</td>
<td>22.71</td>
<td>17.20</td>
<td>1.17</td>
</tr>
<tr>
<td>1991</td>
<td>28,811</td>
<td>21.06</td>
<td>17.82</td>
<td>1.16</td>
</tr>
<tr>
<td>1992</td>
<td>32,473</td>
<td>22.49</td>
<td>17.51</td>
<td>1.19</td>
</tr>
<tr>
<td>1993</td>
<td>37,158</td>
<td>21.54</td>
<td>16.95</td>
<td>1.16</td>
</tr>
<tr>
<td>1994</td>
<td>45,583</td>
<td>20.90</td>
<td>16.95</td>
<td>2.04</td>
</tr>
<tr>
<td>1995</td>
<td>57,201</td>
<td>17.62</td>
<td>16.57</td>
<td>2.87</td>
</tr>
<tr>
<td>1996</td>
<td>55,743</td>
<td>17.99</td>
<td>16.81</td>
<td>3.35</td>
</tr>
<tr>
<td>1997</td>
<td>57,560</td>
<td>19.38</td>
<td>15.17</td>
<td>3.03</td>
</tr>
<tr>
<td>1998</td>
<td>54,489</td>
<td>22.34</td>
<td>13.72</td>
<td>3.25</td>
</tr>
<tr>
<td>1999</td>
<td>61,797</td>
<td>21.54</td>
<td>14.45</td>
<td>3.57</td>
</tr>
</tbody>
</table>

Source: IMF, Direction of Trade Statistics, Yearbook (various issues)
Table 2-1: ADF Unit Root Test for Exports to US

<table>
<thead>
<tr>
<th>Economy/Country</th>
<th>Variable First Difference</th>
<th>Observations</th>
<th>Lags</th>
<th>ADF Test Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hong Kong</td>
<td>Δ𝑦</td>
<td>143</td>
<td>1 – 12</td>
<td>-3.081</td>
</tr>
<tr>
<td></td>
<td>Δ𝑥₁</td>
<td>143</td>
<td>1 – 5</td>
<td>-2.598</td>
</tr>
<tr>
<td></td>
<td>Δ𝑥₂</td>
<td>143</td>
<td>1 – 2</td>
<td>-3.276</td>
</tr>
<tr>
<td></td>
<td>Δ𝑥₃</td>
<td>143</td>
<td>1 – 4</td>
<td>-10.128</td>
</tr>
<tr>
<td>Korea</td>
<td>Δ𝑦</td>
<td>143</td>
<td>1 – 12</td>
<td>-4.977</td>
</tr>
<tr>
<td></td>
<td>Δ𝑥₁</td>
<td>143</td>
<td>1 – 5</td>
<td>-2.598</td>
</tr>
<tr>
<td></td>
<td>Δ𝑥₂</td>
<td>143</td>
<td>1 – 12</td>
<td>-3.716</td>
</tr>
<tr>
<td></td>
<td>Δ𝑥₃</td>
<td>143</td>
<td>1 – 12</td>
<td>-4.148</td>
</tr>
<tr>
<td>Singapore</td>
<td>Δ𝑦</td>
<td>143</td>
<td>1 – 7</td>
<td>-4.821</td>
</tr>
<tr>
<td></td>
<td>Δ𝑥₁</td>
<td>143</td>
<td>1 – 5</td>
<td>-2.598</td>
</tr>
<tr>
<td></td>
<td>Δ𝑥₂</td>
<td>143</td>
<td>1 – 6</td>
<td>-3.078</td>
</tr>
<tr>
<td></td>
<td>Δ𝑥₃</td>
<td>143</td>
<td>1 – 10</td>
<td>-3.562</td>
</tr>
<tr>
<td>Thailand</td>
<td>Δ𝑦</td>
<td>131</td>
<td>1 – 12</td>
<td>-2.813</td>
</tr>
<tr>
<td></td>
<td>Δ𝑥₁</td>
<td>131</td>
<td>1 – 5</td>
<td>-2.598</td>
</tr>
<tr>
<td></td>
<td>Δ𝑥₂</td>
<td>131</td>
<td>1 – 12</td>
<td>-3.417</td>
</tr>
<tr>
<td></td>
<td>Δ𝑥₃</td>
<td>131</td>
<td>1 – 3</td>
<td>-8.250</td>
</tr>
</tbody>
</table>

Notes: 1) “Lags” denotes the included augmentation lags in unit root test. 2) ADF is the augmented Dickey-Fuller test. 3) The ADF regression includes only the intercept. 4) The Mckinnon critical value for rejection of hypothesis of a unit root at 1, 5 and 10 percent level is approximately -3.48, -2.88 and -2.57, respectively. 5) The number of lags was determined based on Akaike info criterion and the F-test (the F-test was conducted from 12 lags downward. The larger number of lags is selected if the F-test for 12lags and the minimum Akaike constant rejects the null hypothesis favoring the shorter lags).

Table 2-2: ADF Unit Root Test for Exports to Japan

<table>
<thead>
<tr>
<th>Economy/Country</th>
<th>Variable First Difference</th>
<th>Observations</th>
<th>Lags</th>
<th>ADF Test Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hong Kong</td>
<td>Δ𝑦</td>
<td>143</td>
<td>1 – 9</td>
<td>-3.026</td>
</tr>
<tr>
<td></td>
<td>Δ𝑥₁</td>
<td>143</td>
<td>1 – 10</td>
<td>-2.725</td>
</tr>
<tr>
<td></td>
<td>Δ𝑥₂</td>
<td>143</td>
<td>1 – 8</td>
<td>-2.938</td>
</tr>
<tr>
<td></td>
<td>Δ𝑥₃</td>
<td>143</td>
<td>1 – 7</td>
<td>-6.742*</td>
</tr>
<tr>
<td>Korea</td>
<td>Δ𝑦</td>
<td>143</td>
<td>1 – 12</td>
<td>-2.796*</td>
</tr>
<tr>
<td></td>
<td>Δ𝑥₁</td>
<td>143</td>
<td>1 – 10</td>
<td>-2.725</td>
</tr>
<tr>
<td></td>
<td>Δ𝑥₂</td>
<td>143</td>
<td>1 – 9</td>
<td>-3.887</td>
</tr>
<tr>
<td></td>
<td>Δ𝑥₃</td>
<td>143</td>
<td>1 – 11</td>
<td>-3.858</td>
</tr>
<tr>
<td>Singapore</td>
<td>Δ𝑦</td>
<td>143</td>
<td>1 – 11</td>
<td>-3.717</td>
</tr>
<tr>
<td></td>
<td>Δ𝑥₁</td>
<td>143</td>
<td>1 – 10</td>
<td>-2.725</td>
</tr>
<tr>
<td></td>
<td>Δ𝑥₂</td>
<td>143</td>
<td>1 – 9</td>
<td>-3.658</td>
</tr>
<tr>
<td></td>
<td>Δ𝑥₃</td>
<td>143</td>
<td>1 – 11</td>
<td>-7.365*</td>
</tr>
<tr>
<td>Thailand</td>
<td>Δ𝑦</td>
<td>131</td>
<td>1 – 11</td>
<td>-3.009</td>
</tr>
<tr>
<td></td>
<td>Δ𝑥₁</td>
<td>131</td>
<td>1 – 10</td>
<td>-2.725</td>
</tr>
<tr>
<td></td>
<td>Δ𝑥₂</td>
<td>131</td>
<td>1 – 12</td>
<td>-3.512</td>
</tr>
<tr>
<td></td>
<td>Δ𝑥₃</td>
<td>131</td>
<td>1 – 12</td>
<td>-3.551</td>
</tr>
</tbody>
</table>

Refer to the notes under <Table 2-1>
Table 3-1: Johansen Co-integration Tests for Exports to the U.S.

<table>
<thead>
<tr>
<th>Economy/Country</th>
<th>Trace Statistics</th>
<th>Maximum Eigenvalue</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H_0: $r = 0$</td>
<td>$r = 1$</td>
</tr>
<tr>
<td></td>
<td>$r \geq 1$</td>
<td>$r \leq 2$</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>89.580*</td>
<td>43.692**</td>
</tr>
<tr>
<td>Korea</td>
<td>66.278**</td>
<td>37.902</td>
</tr>
<tr>
<td>Thailand</td>
<td>67.656*</td>
<td>36.695**</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Critical Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hong Kong and Korea (5%)</td>
</tr>
<tr>
<td>(1%)</td>
</tr>
<tr>
<td>Singapore (5%)</td>
</tr>
<tr>
<td>(1%)</td>
</tr>
<tr>
<td>Thailand (5%)</td>
</tr>
<tr>
<td>(1%)</td>
</tr>
</tbody>
</table>

Notes: 1) r denotes the number of co-integrating vectors. 2) The asterisks (*) and (**) indicate the rejection of the null hypothesis at the 1% and 5% significance level, respectively.

Table 3-2: Johansen Co-integration Test for Exports to Japan

<table>
<thead>
<tr>
<th>Economy/Country</th>
<th>Trace Statistics</th>
<th>Maximum Eigenvalue</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H_0: $r = 0$</td>
<td>$r = 1$</td>
</tr>
<tr>
<td></td>
<td>$r \geq 1$</td>
<td>$r \leq 2$</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>47.809*</td>
<td>22.440</td>
</tr>
<tr>
<td>Korea</td>
<td>70.331*</td>
<td>33.526</td>
</tr>
<tr>
<td>Singapore</td>
<td>51.482*</td>
<td>20.102</td>
</tr>
<tr>
<td>Thailand</td>
<td>68.448*</td>
<td>27.469</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Critical Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hong Kong (5%)</td>
</tr>
<tr>
<td>(1%)</td>
</tr>
<tr>
<td>Korea (5%)</td>
</tr>
<tr>
<td>(1%)</td>
</tr>
<tr>
<td>Singapore (5%)</td>
</tr>
<tr>
<td>(1%)</td>
</tr>
<tr>
<td>Thailand (5%)</td>
</tr>
<tr>
<td>(1%)</td>
</tr>
</tbody>
</table>

Refer to the notes under Table 3-1.
Table 4-1: Estimates of the cointegrating vectors for exports to Japan

<table>
<thead>
<tr>
<th>Country</th>
<th>Normalized cointegrating vector</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Constant</td>
<td>i_t</td>
<td>p_t</td>
<td>r_t</td>
</tr>
<tr>
<td>Hong Kong</td>
<td></td>
<td>4.904</td>
<td>-0.103</td>
<td>2.934</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.498)</td>
<td>(1.219)</td>
<td>(0.916)</td>
</tr>
<tr>
<td>Singapore</td>
<td></td>
<td>4.725</td>
<td>2.545</td>
<td>1.215</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.864)</td>
<td>(0.823)</td>
<td>(0.172)</td>
</tr>
<tr>
<td>Korea</td>
<td>-104.869</td>
<td>19.568</td>
<td>8.781</td>
<td>-1.509</td>
</tr>
<tr>
<td></td>
<td>(17.384)</td>
<td>(3.254)</td>
<td>(1.396)</td>
<td>(0.346)</td>
</tr>
<tr>
<td>Thailand</td>
<td>-23.758</td>
<td>6.352</td>
<td>3.193</td>
<td>-0.290</td>
</tr>
<tr>
<td></td>
<td>(5.249)</td>
<td>(1.133)</td>
<td>(0.433)</td>
<td>(0.090)</td>
</tr>
</tbody>
</table>

Notes:
1. Numbers in the parentheses are standard errors.

Table 4-2: Estimates of the cointegrating vectors for exports to Japan

<table>
<thead>
<tr>
<th>Country</th>
<th>Normalized cointegrating vector</th>
<th>@trend</th>
<th>i_t</th>
<th>p_t</th>
<th>r_t</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Constant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hong Kong</td>
<td>1.131</td>
<td>0.001</td>
<td>0.056</td>
<td>0.258</td>
<td>0.021</td>
</tr>
<tr>
<td></td>
<td>(NA)</td>
<td>(0.001)</td>
<td>(0.337)</td>
<td>(0.130)</td>
<td>(0.019)</td>
</tr>
<tr>
<td>Singapore</td>
<td>-0.148</td>
<td>0.163</td>
<td>0.227</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.209)</td>
<td>(0.849)</td>
<td>(0.131)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Korea</td>
<td>-30.044</td>
<td>-0.012</td>
<td>6.705</td>
<td>1.212</td>
<td>-0.192</td>
</tr>
<tr>
<td></td>
<td>(NA)</td>
<td>(0.003)</td>
<td>(0.878)</td>
<td>(0.223)</td>
<td>(0.039)</td>
</tr>
<tr>
<td>Thailand</td>
<td>9.856</td>
<td>0.005</td>
<td>0.107</td>
<td>3.765</td>
<td>0.114</td>
</tr>
<tr>
<td></td>
<td>(NA)</td>
<td>(NA)</td>
<td>(5.632)</td>
<td>(0.859)</td>
<td>(0.095)</td>
</tr>
</tbody>
</table>

Notes:
1. Numbers in the parentheses are standard errors.
Table 5-1: Regression Results for Error-Correction Models for Export to Japan

<table>
<thead>
<tr>
<th>Variables</th>
<th>Hong Kong</th>
<th>Singapore</th>
<th>Korea</th>
<th>Thailand</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.141</td>
<td>0.007</td>
<td>-0.004</td>
<td>0.009</td>
</tr>
<tr>
<td></td>
<td>(0.040)</td>
<td>(0.006)</td>
<td>(0.012)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>@trend</td>
<td>-0.001</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC,t-1</td>
<td>0.022</td>
<td>-0.103</td>
<td>0.019</td>
<td>0.018</td>
</tr>
<tr>
<td></td>
<td>(0.019)</td>
<td>(0.019)</td>
<td>(0.009)</td>
<td>(0.019)</td>
</tr>
<tr>
<td>Y,t-1</td>
<td>-0.950</td>
<td>-0.471</td>
<td>-0.601</td>
<td>-0.753</td>
</tr>
<tr>
<td></td>
<td>(0.065)</td>
<td>(0.081)</td>
<td>(0.100)</td>
<td>(0.097)</td>
</tr>
<tr>
<td>Y,t-2</td>
<td>-0.269</td>
<td>-0.506</td>
<td>-0.327</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.091)</td>
<td>(0.112)</td>
<td>(0.091)</td>
<td></td>
</tr>
<tr>
<td>Y,t-3</td>
<td>-0.166</td>
<td>-0.223</td>
<td>-0.306</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.110)</td>
<td>(0.092)</td>
<td>(0.123)</td>
<td></td>
</tr>
<tr>
<td>Y,t-4</td>
<td>-1.224</td>
<td>-0.159</td>
<td>-0.176</td>
<td>-0.181</td>
</tr>
<tr>
<td></td>
<td>(0.135)</td>
<td>(0.092)</td>
<td>(0.113)</td>
<td>(0.091)</td>
</tr>
<tr>
<td>Y,t-5</td>
<td>-1.091</td>
<td>-0.179</td>
<td>-0.115</td>
<td>-0.222</td>
</tr>
<tr>
<td></td>
<td>(0.144)</td>
<td>(0.085)</td>
<td>(0.104)</td>
<td>(0.089)</td>
</tr>
<tr>
<td>Y,t-6</td>
<td>-0.586</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.230)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y,t-7</td>
<td></td>
<td>0.153</td>
<td>0.167</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.080)</td>
<td>(0.091)</td>
<td></td>
</tr>
<tr>
<td>Y,t-8</td>
<td>-0.414</td>
<td>-0.083</td>
<td></td>
<td>0.150</td>
</tr>
<tr>
<td></td>
<td>(0.252)</td>
<td>(0.070)</td>
<td></td>
<td>(0.091)</td>
</tr>
<tr>
<td>Y,t-9</td>
<td>-0.375</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.248)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y,t-12</td>
<td>-0.233</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.076)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i,t</td>
<td>1.099</td>
<td>1.386</td>
<td>0.625</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.334)</td>
<td>(0.333)</td>
<td>(0.288)</td>
<td></td>
</tr>
<tr>
<td>i,t-1</td>
<td>2.835</td>
<td>0.437</td>
<td>0.381</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.967)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i,t-2</td>
<td>2.196</td>
<td>0.535</td>
<td>-0.770</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.997)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i,t-3</td>
<td>0.382</td>
<td>0.697</td>
<td>-0.785</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.367)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i,t-4</td>
<td>0.806</td>
<td>0.406</td>
<td>-0.685</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.385)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i,t-5</td>
<td>2.973</td>
<td>0.542</td>
<td>0.861</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.900)</td>
<td>(0.374)</td>
<td>(0.412)</td>
<td></td>
</tr>
<tr>
<td>i,t-6</td>
<td>0.626</td>
<td>0.859</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.363)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i,t-7</td>
<td></td>
<td>0.823</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.363)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i,t-9</td>
<td>2.641</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.953)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i,t-12</td>
<td>0.823</td>
<td></td>
<td></td>
<td>-0.917</td>
</tr>
<tr>
<td></td>
<td>(0.371)</td>
<td></td>
<td></td>
<td>(0.304)</td>
</tr>
<tr>
<td>i,t-13</td>
<td>-1.403</td>
<td>0.574</td>
<td>0.660</td>
<td>0.258</td>
</tr>
<tr>
<td></td>
<td>(0.623)</td>
<td>(0.277)</td>
<td>(0.192)</td>
<td>(0.140)</td>
</tr>
<tr>
<td>p,t-1</td>
<td>1.533</td>
<td>-0.796</td>
<td></td>
<td>0.441</td>
</tr>
<tr>
<td></td>
<td>(0.644)</td>
<td>(0.298)</td>
<td></td>
<td>(0.149)</td>
</tr>
<tr>
<td>p,t-3</td>
<td>0.439</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.197)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable</td>
<td>Coefficient</td>
<td>Standard Error</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{t-4}</td>
<td>0.226</td>
<td>(0.180)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{t-5}</td>
<td>0.144</td>
<td>(0.139)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{t-6}</td>
<td>0.923</td>
<td>(0.644)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{t-7}</td>
<td>0.099</td>
<td>(0.158)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{t-8}</td>
<td>1.527</td>
<td>(0.650)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{t-9}</td>
<td>-0.902</td>
<td>(0.289)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{t-10}</td>
<td>0.358</td>
<td>(0.155)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{t-11}</td>
<td>0.265</td>
<td>(0.180)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{t-12}</td>
<td>0.144</td>
<td>(0.139)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{t-13}</td>
<td>0.923</td>
<td>(0.644)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{t-14}</td>
<td>0.144</td>
<td>(0.139)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{t-15}</td>
<td>0.358</td>
<td>(0.155)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{1}</td>
<td>0.099</td>
<td>(0.051)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{2}</td>
<td>0.067</td>
<td>(0.025)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{3}</td>
<td>0.045</td>
<td>(0.024)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{4}</td>
<td>0.052</td>
<td>(0.022)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{5}</td>
<td>0.045</td>
<td>(0.021)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{6}</td>
<td>0.052</td>
<td>(0.020)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{7}</td>
<td>-0.055</td>
<td>(0.015)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{8}</td>
<td>-0.055</td>
<td>(0.015)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{9}</td>
<td>-0.055</td>
<td>(0.015)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{10}</td>
<td>-0.055</td>
<td>(0.015)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{11}</td>
<td>-0.055</td>
<td>(0.015)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{12}</td>
<td>-0.055</td>
<td>(0.015)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{13}</td>
<td>-0.055</td>
<td>(0.015)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{14}</td>
<td>-0.055</td>
<td>(0.015)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{15}</td>
<td>-0.055</td>
<td>(0.015)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{16}</td>
<td>-0.055</td>
<td>(0.015)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{17}</td>
<td>-0.055</td>
<td>(0.015)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adjusted R^2: 0.771

DW: 2.111

Notes: Figures in parentheses are standard errors
Table 5-2: Regression Results for Error-Correction Models for Export to the U.S.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Hong Kong</th>
<th>Singapore</th>
<th>Korea</th>
<th>Thailand</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-0.002</td>
<td>-0.002</td>
<td>0.013</td>
<td>-0.020</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.005)</td>
<td>(0.005)</td>
<td>(0.010)</td>
</tr>
<tr>
<td>@trend</td>
<td></td>
<td></td>
<td></td>
<td>-0.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.0009)</td>
</tr>
<tr>
<td>EC_{t-1}</td>
<td>-0.965</td>
<td>-0.041</td>
<td>-0.160</td>
<td>-0.053</td>
</tr>
<tr>
<td></td>
<td>(0.086)</td>
<td>(0.015)</td>
<td>(0.038)</td>
<td>(0.011)</td>
</tr>
<tr>
<td>Y_{t-1}</td>
<td>-0.429</td>
<td>-0.360</td>
<td>-0.618</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.084)</td>
<td>(0.078)</td>
<td>(0.080)</td>
<td></td>
</tr>
<tr>
<td>Y_{t-2}</td>
<td>0.225</td>
<td>-0.254</td>
<td>-0.148</td>
<td>-0.436</td>
</tr>
<tr>
<td></td>
<td>(0.078)</td>
<td>(0.085)</td>
<td>(0.086)</td>
<td>(0.091)</td>
</tr>
<tr>
<td>Y_{t-3}</td>
<td>0.417</td>
<td>0.220</td>
<td>-0.187</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.099)</td>
<td>(0.079)</td>
<td>(0.084)</td>
<td></td>
</tr>
<tr>
<td>Y_{t-4}</td>
<td>0.433</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.109)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y_{t-5}</td>
<td>0.210</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.113)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y_{t-6}</td>
<td>0.379</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.111)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y_{t-7}</td>
<td>0.543</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.113)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y_{t-8}</td>
<td>0.587</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.113)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y_{t-9}</td>
<td>0.646</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.122)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y_{t-10}</td>
<td>0.476</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.128)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y_{t-11}</td>
<td>0.459</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.125)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y_{t-12}</td>
<td>0.406</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.113)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y_{t-13}</td>
<td>0.195</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.084)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i_{t}</td>
<td>1.634</td>
<td>1.934</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.958)</td>
<td>(0.824)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i_{t-1}</td>
<td></td>
<td>1.768</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.783)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i_{t-2}</td>
<td></td>
<td>1.401</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.772)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i_{t-4}</td>
<td></td>
<td>1.767</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.808)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i_{t-5}</td>
<td>2.344</td>
<td>2.030</td>
<td>2.354</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.019)</td>
<td>(0.833)</td>
<td>(0.797)</td>
<td></td>
</tr>
<tr>
<td>i_{t-6}</td>
<td>1.238</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.012)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i_{t-7}</td>
<td></td>
<td>-1.463</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.856)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i_{t-8}</td>
<td></td>
<td></td>
<td>3.446</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.784)</td>
<td></td>
</tr>
<tr>
<td>i_{t-9}</td>
<td></td>
<td>-1.699</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.769)</td>
<td></td>
</tr>
<tr>
<td>i_{t-10}</td>
<td>1.484</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i_{-11})</td>
<td>2.489</td>
<td>(0.897)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i_{-12})</td>
<td>-2.19</td>
<td>(0.870)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p_t)</td>
<td>2.376</td>
<td>(0.877)</td>
<td>0.676</td>
<td>(0.362)</td>
</tr>
<tr>
<td>(p_{-1})</td>
<td>3.045</td>
<td>(0.847)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p_{-3})</td>
<td>-1.408</td>
<td>(0.805)</td>
<td>0.265</td>
<td>(0.362)</td>
</tr>
<tr>
<td>(p_{-4})</td>
<td>2.246</td>
<td>(0.907)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p_{-5})</td>
<td></td>
<td>-0.228</td>
<td>(0.110)</td>
<td>0.254</td>
</tr>
<tr>
<td>(p_{-8})</td>
<td>-2.747</td>
<td>(1.032)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p_{-10})</td>
<td></td>
<td>-0.138</td>
<td>(0.097)</td>
<td></td>
</tr>
<tr>
<td>(p_{-12})</td>
<td>2.059</td>
<td>(0.922)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t)</td>
<td>0.013</td>
<td>(0.006)</td>
<td>-0.016</td>
<td>(0.007)</td>
</tr>
<tr>
<td>(t_{-1})</td>
<td>-0.027</td>
<td>(0.008)</td>
<td>0.017</td>
<td>(0.008)</td>
</tr>
<tr>
<td>(t_{-2})</td>
<td>-0.015</td>
<td>(0.007)</td>
<td>0.013</td>
<td>(0.008)</td>
</tr>
<tr>
<td>(t_{-3})</td>
<td>-0.014</td>
<td>(0.007)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_{-4})</td>
<td>-0.013</td>
<td>(0.006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_{-5})</td>
<td></td>
<td>-0.011</td>
<td>(0.007)</td>
<td></td>
</tr>
<tr>
<td>(t_{-6})</td>
<td>-0.026</td>
<td>(0.006)</td>
<td></td>
<td>0.011</td>
</tr>
<tr>
<td>(t_{-7})</td>
<td></td>
<td></td>
<td></td>
<td>0.019</td>
</tr>
<tr>
<td>(t_{-8})</td>
<td></td>
<td></td>
<td></td>
<td>0.013</td>
</tr>
<tr>
<td>(t_{-10})</td>
<td>0.011</td>
<td>(0.006)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adjusted R²: 0.624
DW: 1.944

Notes: Figures in parentheses are standard errors
Real Exchange Rates of Korea

WON/USD and 100*WON/Yen

WON/US 100*WON/JY
Real Exchange Rates of Singapore

SP$/USD and 100*SP$/Yen
Real Exchange Rates of Thailand

![Graph showing real exchange rates over time.](image-url)
Exchange Rate Volatility of Hong Kong

HK$/USD and 100*HK$/Yen
Exchange Rate Volatility of Korea

WON/USD and 100*WON/JY

WON/U$ 100*WON/JY
Exchange Rate Volatility of Singapore

SP$/USD and 100*SP$/Yen
Exchange Rate Volatility of Thailand

THB/USD and $100\times$THB/Yen